|本期目录/Table of Contents|

[1]高梦钒,王鑫鑫,陈任强,等.禾本科-豆科作物间作对农业生态系统服务的影响[J].江苏农业科学,2025,53(6):1-15.
 Gao Mengfan,et al.Effects of intercropping between gramineous and leguminous crops on agro-ecosystem services[J].Jiangsu Agricultural Sciences,2025,53(6):1-15.
点击复制

禾本科-豆科作物间作对农业生态系统服务的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第6期
页码:
1-15
栏目:
专论与综述
出版日期:
2025-03-20

文章信息/Info

Title:
Effects of intercropping between gramineous and leguminous crops on agro-ecosystem services
作者:
高梦钒1王鑫鑫456陈任强1许华森3刘宏权12
1.河北农业大学城乡建设学院,河北保定 071001; 2.农业农村部华北节水农业重点实验室,河北保定 071001; 3. 河北农业大学资源与环境科学学院,河北保定 071001; 4.河北省山区农业技术创新中心,河北保定 071001; 5.国家北方山区农业工程技术研究中心,河北保定 071001; 6.河北农业大学河北省山区研究所,河北保定 071001
Author(s):
Gao Mengfanet al
关键词:
间作生产力水分利用氮素利用土壤微生态
Keywords:
-
分类号:
S344.2
DOI:
-
文献标志码:
A
摘要:
间作是传统农业中提高农业生态生物多样性、增强农田生产力的一种有效的种植模式,能够改变农业生态系统的时空条件,发挥作物地上部分和地下部分的种间互作,充分利用光能和土壤养分。豆科作物作为一种绿色氮源,禾本科‖豆科间作模式将豆科作物纳入间作系统后,利用豆科作物生物固氮的特性减少了氮肥施用量,利用种间互作提高了非豆科作物对土壤氮素利用效率,从而提高农业生态服务系统功能,为实现可持续集约化农业提供了一种可能。因此,本文首先从禾本科‖豆科间作增加农田物种多样性、减少病虫害和提高生产稳定性方面,对禾本科‖豆科间作对农业生态服务系统的影响进行了阐述;其次,从地上部对光能的利用和地下部根系生长特征以及种间竞争作用对土壤养分的高效利用方面分析了对农业生态系统服务影响的具体机制;最后,对禾本科‖豆科间作提出了存在的具体问题和未来研究展望。具体问题包括机械化生产、农药使用和作物模型的建立开发,以此更好地实现禾本科‖豆科间作的可持续发展。本文同时也展望了在水资源短缺的背景下,探究高效的水肥调控机制以及双碳背景下禾本科‖豆科间作利用不同的农作方式实现温室气体减排的目标,充分利用禾本科‖豆科间作实现农业可持续性发展。
Abstract:
-

参考文献/References:

[1]Ramankutty N,Mehrabi Z,Waha K,et al. Trends in global agricultural land use:implications for environmental health and food security[J]. Annual Review of Plant Biology,2018,69:789-815.
[2]West P C,Gerber J S,Engstrom P M,et al. Leverage points for improving global food security and the environment[J]. Science,2014,345(6194):325-328.
[3]Laurett R,Pao A,Mainardes E W. Sustainable development in agriculture and its antecedents,barriers and consequences:an exploratory study[J]. Sustainable Production and Consumption,2021,27:298-311.
[4]Lei S H,Yang X,Qin J H. Does agricultural factor misallocation hinder agricultural green production efficiency?Evidence from China[J]. Science of the Total Environment,2023,891:164466.
[5]Liu X H. Sustainable intensification:a historical perspective on Chinas farming system[J]. Farming System,2023,1(1):100001.
[6]Zhang Y N,Long H L,Chen S C,et al. The development of multifunctional agriculture in farming regions of China:convergence or divergence?[J]. Land Use Policy,2023,127:106576.
[7]Li M,Cao X X,Liu D,et al. Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions:a multi-dimensional optimization approach[J]. Agricultural Water Management,2022,259:107235.
[8]Ren C C,Zhang X M,Reis S,et al. Socioeconomic barriers of nitrogen management for agricultural and environmental sustainability[J]. Agriculture,Ecosystems & Environment,2022,333:107950.
[9]Ze F,Wong W K,Alhasan T K,et al. Economic development,natural resource utilization,GHG emissions and sustainable development:a case study of China[J]. Resources Policy,2023,83:103596.
[10]Lamichhane J R,Alletto L,Cong W F,et al. Relay cropping for sustainable intensification of agriculture across temperate regions:crop management challenges and future research priorities[J]. Field Crops Research,2023,291:108795.
[11]Martin-Guay M O,Paquette A,Dupras J,et al. The new Green Revolution:sustainable intensification of agriculture by intercropping[J]. Science of the Total Environment,2018,615:767-772.
[12]Tilman D. Benefits of intensive agricultural intercropping[J]. Nature Plants,2020,6(6):604-605.
[13]乔月彤. 间作和施氮对玉米、花生和大豆产量和氮素积累的影响[D]. 济南:山东师范大学,2022:7-8.
[14]孙明明,王萍,吕世翔,等. 大豆间套作种植技术研究进展[J]. 大豆科学,2017,36(5):818-823.
[15]吴昊. 玉米苜蓿不同间作行比与施氮水平对作物生长及土壤环境的影响[D]. 太原:太原理工大学,2021:10-11.
[16]陈晨,刘子凡,黄洁,等. 木薯和花生间作模式下2种作物光合与干物质积累特性[J]. 热带作物学报,2022,43(8):1613-1619.
[17]刘丽娟,黄洁,魏云霞,等. 木薯‖玉米间作模式对木薯产量、薯构型及土壤性质的影响[J]. 中国农业大学学报,2022,27(11):22-35.
[18]徐海强,黄洁,魏云霞,等. 木薯与花生间作对产量和养分的影响[J]. 湖南农业大学学报(自然科学版),2018,44(6):575-579.
[19]Bouwman A F,Beusen A H W,Lassaletta L,et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland[J]. Scientific Reports,2017,7:40366.
[20]Franco J G,King S R,Volder A. Component crop physiology and water use efficiency in response to intercropping[J]. European Journal of Agronomy,2018,93:27-39.
[21]Suliman N S,Kassim N Q B. Enhancing soil chemical properties at plantation riparian buffer zone using leguminous cover crops:a review[J]. IOP Conference Series:Earth and Environmental Science,2022,1019(1):012003.
[22]Schwerdtner U,Spohn M. Interspecific root interactions increase maize yields in intercropping with different companion crops[J]. Journal of Plant Nutrition and Soil Science,2021,184(5):596-606.
[23]王雅梅,许彦骁,王亚露,等. 玉米-大豆不同宽幅间作对大豆光合特性及群体产量的影响[J]. 农业环境科学学报,2020,39(11):2587-2595.
[24]Li Q S,Chen J,Wu L K,et al. Belowground interactions impact the soil bacterial community,soil fertility,and crop yield in maize/peanut intercropping systems[J]. International Journal of Molecular Sciences,2018,19(2):622.
[25]Li Q S,Wu L K,Chen J,et al. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping[J]. Journal of Integrative Agriculture,2016,15(1):101-110.
[26]Zhao C,Chai Q,Zhao Y H,et al. Interspecific competition and complementation is a function of N management in maize-pea intercropping systems[J]. Crop Science,2016,56(6):3286-3294.
[27]杨文亭,王晓维,王建武. 豆科-禾本科间作系统中作物和土壤氮素相关研究进展[J]. 生态学杂志,2013,32(9):2480-2484.
[28]Cappelli S L,Domeignoz-Horta L A,Loaiza V,et al. Plant biodiversity promotes sustainable agriculture directly and via belowground effects[J]. Trends in Plant Science,2022,27(7):674-687.
[29]He H M,Liu L N,Munir S,et al. Crop diversity and pest management in sustainable agriculture[J]. Journal of Integrative Agriculture,2019,18(9):1945-1952.
[30]Shrestha P,Gautam R,Ashwath N. Effects of agronomic treatments on functional diversity of soil microbial community and microbial activity in a revegetated coal mine spoil[J]. Geoderma,2019,338:40-47.
[31]Vukicevich E,Lowery T,Bowen P,et al. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture:a review[J]. Agronomy for Sustainable Development,2016,36(3):48.
[32]Dong N,Tang M M,Zhang W P,et al. Temporal differentiation of crop growth as one of the drivers of intercropping yield advantage[J]. Scientific Reports,2018,8(1):3110.
[33]Yu Y,Stomph T J,Makowski D,et al. A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management[J]. Field Crops Research,2016,198:269-279.
[34]Bargaz A,Isaac M E,Jensen E S,et al. Intercropping of faba bean with wheat under low water availability promotes faba bean nodulation and root growth in deeper soil layers[J]. Procedia Environmental Sciences,2015,29:111-112.
[35]Duchene O,Vian J F,Celette F. Intercropping with legume for agroecological cropping systems:complementarity and facilitation processes and the importance of soil microorganisms.A review[J]. Agriculture,Ecosystems & Environment,2017,240:148-161.
[36]瓮巧云,黄新军,许翰林,等. 玉米‖大豆间作模式对青贮玉米产量、品质及土壤营养、根际微生物的影响[J]. 核农学报,2021,35(2):462-470.
[37]Jiang Y H,Khan M U,Lin X Q,et al. Evaluation of maize/peanut intercropping effects on microbial assembly,root exudates and peanut nitrogen uptake[J]. Plant Physiology and Biochemistry,2022,171:75-83.
[38]Cao X N,Liu S C,Wang J J,et al. Soil bacterial diversity changes in different broomcorn millet intercropping systems[J]. Journal of Basic Microbiology,2017,57(12):989-997.
[39]Cameron K C,Di H J,Moir J L. Nitrogen losses from the soil/plant system:a review[J]. Annals of Applied Biology,2013,162(2):145-173.
[40]Tang X Y,Bernard L,Brauman A,et al. Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions[J]. Soil Biology and Biochemistry,2014,75:86-93.
[41]党晶晶,张越,霍静倩,等. 间作豆类作物对玉米田中杂草防控作用的研究[J]. 玉米科学,2017,25(5):136-140.
[42]沈雪峰,方越,董朝霞,等. 甘蔗花生间作对甘蔗地土壤杂草种子萌发特性的影响[J]. 生态学杂志,2015,34(3):656-660.
[43]Rakotomalala A A N A,Ficiciyan A M,Tscharntke T. Intercropping enhances beneficial arthropods and controls pests:a systematic review and meta-analysis[J]. Agriculture,Ecosystems & Environment,2023,356:108617.
[44]Ju Q,Ouyang F,Gu S M,et al. Strip intercropping peanut with maize for peanut aphid biological control and yield enhancement[J]. Agriculture,Ecosystems & Environment,2019,286:106682.
[45]董艳,董坤,汤利,等. 小麦蚕豆间作对蚕豆根际微生物群落功能多样性的影响及其与蚕豆枯萎病发生的关系[J]. 生态学报,2013,33(23):7445-7454.
[46]Guo Z P,Luo C S,Dong Y,et al. Effect of nitrogen regulation on the epidemic characteristics of intercropping faba bean rust disease primarily depends on the canopy microclimate and nitrogen nutrition[J]. Field Crops Research,2021,274:108339.
[47]董艳,汤利,郑毅,等. 施氮对间作蚕豆根际微生物区系和枯萎病发生的影响[J]. 生态学报,2010,30(7):1797-1805.
[48]Raseduzzaman M,Jensen E S. Does intercropping enhance yield stability in arable crop production?A meta-analysis[J]. European Journal of Agronomy,2017,91:25-33.
[49]Du J B,Han T F,Gai J Y,et al. Maize-soybean strip intercropping:achieved a balance between high productivity and sustainability[J]. Journal of Integrative Agriculture,2018,17(4):747-754.
[50]Xu Z,Li C J,Zhang C C,et al. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use:a meta-analysis[J]. Field Crops Research,2020,246:107661.
[51]Liu X,Rahman T,Song C,et al. Relationships among light distribution,radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping[J]. Field Crops Research,2018,224:91-101.
[52]Te X,Din A M U,Cui K S,et al. Inter-specific root interactions and water use efficiency of maize/soybean relay strip intercropping[J]. Field Crops Research,2023,291:108793.
[53]蔡倩,孙占祥,王文斌,等. 辽西半干旱区玉米大豆间作对作物产量及水分利用的影响[J]. 中国农业气象,2022,43(7):551-562.
[54]焦念元,李亚辉,杨潇,等. 玉米‖花生间作行比和施磷对玉米光合特性的影响[J]. 应用生态学报,2016,27(9):2959-2967.
[55]张晓娜,陈平,庞婷,等. 玉米‖豆科间作种植模式对作物干物质积累、分配及产量的影响[J]. 四川农业大学学报,2017,35(4):484-490.
[56]华劲松. 玉米‖芸豆间作模式下种植密度对芸豆产量及品质的影响[J]. 江苏农业科学,2012,40(11):89-91.
[57]Liu Z,Nan Z W,Lin S M,et al. Millet/peanut intercropping at a moderate N rate increases crop productivity and N use efficiency,as well as economic benefits,under rain-fed conditions[J]. Journal of Integrative Agriculture,2023,22(3):738-751.
[58]王钰云,王宏富,李智,等. 谷子花生间作对谷子光合特性及产量的影响[J]. 中国农业科技导报,2020,22(5):153-165.
[59]吴香奇,刘博,张威,等. 小麦豌豆间作对群体光合特性和生产力的影响[J]. 作物学报,2023,49(4):1079-1089.
[60]党科,宫香伟,吕思明,等. 糜子‖绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报,2021,47(6):1175-1187.
[61]任家兵,张梦瑶,肖靖秀,等. 小麦‖蚕豆间作提高间作产量的优势及其氮肥响应[J]. 中国生态农业学报(中英文),2020,28(12):1890-1900.
[62]Iqbal N,Hussain S,Ahmed Z,et al. Comparative analysis of maize-soybean strip intercropping systems:a review[J]. Plant Production Science,2019,22(2):131-142.
[63]Li C J,Hoffland E,Kuyper T W,et al. Syndromes of production in intercropping impact yield gains[J]. Nature Plants,2020,6(6):653-660.
[64]Shen Y W,Sui P,Huang J X,et al. Global warming potential from maize and maize-soybean as affected by nitrogen fertilizer and cropping practices in the North China Plain[J]. Field Crops Research,2018,225:117-127.
[65]陈津赛,王广帅,张莹莹,等. 玉米大豆间作对农田土壤N2O排放的影响[J]. 灌溉排水学报,2020,39(9):32-40.
[66]Hu F L,Gan Y T,Chai Q,et al. Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping[J]. Field Crops Research,2016,198:50-60.
[67]Hu F L,Tan Y,Yu A Z,et al. Optimizing the split of N fertilizer application over time increases grain yield of maize-pea intercropping in arid areas[J]. European Journal of Agronomy,2020,119:126117.
[68]Arshad M,Nawaz R,Ahmad S,et al. Growth,yield and nutritional performance of sweet sorghum and legumes in sole and intercropping influenced by type of legume,nitrogen level and air quality[J]. Polish Journal of Environmental Studies,2019,29:533-543.
[69]Luo S S,Yu L L,Liu Y,et al. Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/soybean intercropping system[J]. European Journal of Agronomy,2016,81:78-85.
[70]Wang C H,Zhong Y J,Liao H. Partnering crops with root-associated microbes for soil health and agricultural sustainability[J]. Pedosphere,2024,34(1):26-29.
[71]李金婷,覃潇敏,覃宏宇,等. 间作对玉米根系形态特征及其氮磷养分吸收的影响[J]. 南方农业学报,2022,53(5):1348-1356.
[72]覃潇敏,潘浩男,肖靖秀,等. 不同磷水平下玉米‖大豆间作系统根系形态变化[J]. 应用生态学报,2021,32(9):3223-3230.
[73]Bargaz A,Noyce G L,Fulthorpe R,et al. Species interactions enhance root allocation,microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency[J]. Applied Soil Ecology,2017,120:179-188.
[74]柏文恋,张梦瑶,刘振洋,等. 小麦与蚕豆间作体系根系形态与磷吸收的定量解析[J]. 应用生态学报,2021,32(4):1317-1326.
[75]王宇蕴,李兰,郑毅,等. 基于根系形态对磷吸收的贡献解析小麦‖蚕豆间作促进磷吸收的作用[J]. 中国生态农业学报(中英文),2020,28(7):954-959.
[76]Zhang D S,Zhang C C,Tang X Y,et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize[J]. New Phytologist,2016,209(2):823-831.
[77]Li C J,Dong Y,Li H G,et al. Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted[J]. Scientific Reports,2016,6:18663.
[78]Zhang Y,Sun Z X,Su Z C,et al. Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition[J]. Field Crops Research,2022,282:108523.
[79]Zheng C H,Wang R S,Zhou X,et al. Effects of mulch and irrigation regimes on water distribution and root competition in an apple-soybean intercropping system in Loess Plateau,China[J]. Agricultural Water Management,2021,246:106656.
[80]Li X Y,imunek J,Shi H B,et al. Spatial distribution of soil water,soil temperature,and plant roots in a drip-irrigated intercropping field with plastic mulch[J]. European Journal of Agronomy,2017,83:47-56.
[81]Nyawade S O,Karanja N N,Gachene C K K,et al. Intercropping optimizes soil temperature and increases crop water productivity and radiation use efficiency of rainfed potato[J]. American Journal of Potato Research,2019,96(5):457-471.
[82]Yin W,Chai Q,Zhao C,et al. Water utilization in intercropping:a review[J]. Agricultural Water Management,2020,241:106335.
[83]Ren Y Y,Liu J J,Wang Z L,et al. Planting density and sowing proportions of maize-soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau,China[J]. European Journal of Agronomy,2016,72:70-79.
[84]李恩慧,穆阳阳,何亚男,等. 小麦和苜蓿套作种植对土壤水分及作物水分利用效率的影响[J]. 水土保持研究,2020,27(1):54-58,65.
[85]宫香伟,党科,李境,等. 糜子绿豆间作模式下糜子光合物质生产及水分利用效率[J]. 中国农业科学,2019,52(22):4139-4153.
[86]牛伊宁,刘冬梅,罗珠珠,等. 不同供水水平对玉米/豌豆间作系统作物耗水特征的影响[J]. 干旱地区农业研究,2018,36(1):83-88,101.
[87]王雅梅. 玉米‖大豆不同宽幅间作对大豆光合特性和水分利用效率的影响[D]. 北京:中国农业科学院,2020:26-30.
[88]Rahman T,Ye L,Liu X,et al. Water use efficiency and water distribution response to different planting patterns in maize-soybean relay strip intercropping systems[J]. Experimental Agriculture,2017,53(2):159-177.
[89]梁晓红,曹雄,张瑞栋,等. 高粱和大豆间作对土壤水分分布及水分利用效率的影响[J]. 河南农业科学,2021,50(7):30-38.
[90]Chai Q,Gan Y T,Zhao C,et al. Regulated deficit irrigation for crop production under drought stress.A review[J]. Agronomy for Sustainable Development,2015,36(1):3.
[91]Chimonyo V G P,Modi A T,Mabhaudhi T. Water use and productivity of a Sorghum-cowpea-bottle gourd intercrop system[J]. Agricultural Water Management,2016,165:82-96.
[92]Tsialtas I T,Baxevanos D,Vlachostergios D N,et al. Cultivar complementarity for symbiotic nitrogen fixation and water use efficiency in pea-oat intercrops and its effect on forage yield and quality[J]. Field Crops Research,2018,226:28-37.
[93]Zhao C,Chai Q,Cao W D,et al. No-tillage reduces competition and enhances compensatory growth of maize (Zea mays L.) intercropped with pea (Pisum sativum L.)[J]. Field Crops Research,2019,243:107611.
[94]滕园园,赵财,柴强,等. 氮肥后移对玉米间作豌豆耗水特性的调控效应[J]. 作物学报,2016,42(3):446-455.
[95]Yin W,Fan Z L,Hu F L,et al. Innovation in alternate mulch with straw and plastic management bolsters yield and water use efficiency in wheat-maize intercropping in arid conditions[J]. Scientific Reports,2019,9(1):6364.
[96]Yin W,Yu A Z,Guo Y,et al. Straw retention and plastic mulching enhance water use via synergistic regulation of water competition and compensation in wheat-maize intercropping systems[J]. Field Crops Research,2018,229:78-94.
[97]Adetunji A T,Ncube B,Mulidzi R,et al. Management impact and benefit of cover crops on soil quality:a review[J]. Soil and Tillage Research,2020,204:104717.
[98]Chen J,Arafat Y,Wu L K,et al. Shifts in soil microbial community,soil enzymes and crop yield under peanut/maize intercropping with reduced nitrogen levels[J]. Applied Soil Ecology,2018,124:327-334.
[99]Wittwer R A,Dorn B,Jossi W,et al. Cover crops support ecological intensification of arable cropping systems[J]. Scientific Reports,2017,7:41911.
[100]Bagale S. Nutrient management for soybean crops[J]. International Journal of Agronomy,2021(1):3304634.
[101]Vincent-Caboud L,Casagrande M,David C,et al. Using mulch from cover crops to facilitate organic no-till soybean and maize production:a review[J]. Agronomy for Sustainable Development,2019,39(5):45.
[102]Stepanov A F,Chibis S P,Khramov S Y,et al. Nitrogen-fixing ability of perennial leguminous grasses in various environmental conditions of the Western Siberia[J]. IOP Conference Series(Earth and Environmental Science),2021,723(2):022020.
[103]黑泽文,向慧敏,章家恩,等. 豆科植物修复土壤重金属污染研究进展[J]. 生态科学,2019,38(3):218-224.
[104]迟静娴,徐方继,刘译阳,等. 豆科植物结瘤固氮及其分子调控机制的研究进展[J]. 山东农业科学,2022,54(3):155-164.
[105]Li B,Li Y Y,Wu H M,et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(23):6496-6501.
[106]Hamawaki R L,Kantartzi S K. Di-nitrogen fixation at the early and late growth stages of soybean[J]. Acta Scientiarum Agronomy,2018,40(1):36372.
[107]柯丹霞,徐勤朕,杨娜,等. 高氮抑制豆科植物结瘤固氮机制研究进展[J]. 生物技术通报,2019,35(10):40-45.
[108]Jiao N Y,Wang J T,Ma C,et al. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping[J]. The Crop Journal,2021,9(6):1460-1469.
[109]Shao Z Q,Zheng C C,Postma J A,et al. Nitrogen acquisition,fixation and transfer in maize/alfalfa intercrops are increased through root contact and morphological responses to interspecies competition[J]. Journal of Integrative Agriculture,2021,20(8):2240-2254.
[110]李奇松,李家俊,叶江华,等. 玉米‖豆科作物间作系统中不同互作因子对群体产量的影响[J]. 福建农业学报,2020,35(6):582-590.
[111]刘颖,张佳蕾,李新国,等. 豆科作物氮素高效利用机制研究进展[J]. 中国油料作物学报,2022,44(3):476-482.
[112]黄涛,冯远娇,王建武. 禾本科‖豆科间作对土壤微生物影响的研究进展[J]. 生态科学,2022,41(3):229-236.
[113]Fu Z D,Zhou L,Chen P,et al. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community[J]. Journal of Integrative Agriculture,2019,18(9):2006-2018.
[114]Cong W F,Hoffland E,Li L,et al. Intercropping enhances soil carbon and nitrogen[J]. Global Change Biology,2015,21(4):1715-1726.
[115]Finney D M,White C M,Kaye J P. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures[J]. Agronomy Journal,2016,108(1):39-52.
[116]Xiang H M,Zhang Y,Wei H,et al. Soil properties and carbon and nitrogen pools in a young hillside Longan orchard after the introduction of leguminous plants and residues[J]. PeerJ,2018,6:e5536.
[117]王倩倩,刘志强,陈康,等. 不同土壤施磷和接种根瘤菌对大豆‖玉米间作系统氮磷吸收的影响[J]. 中国生态农业学报(中英文),2022,30(12):1913-1924.
[118]任媛媛,李朝怡,闫敏飞,等. 黄土塬区玉米‖大豆间作对根系形态的影响[J]. 草业科学,2021,38(12):2449-2459.
[119]He Y,Ding N,Shi J C,et al. Profiling of microbial PLFAs:Implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils[J]. Soil Biology and Biochemistry,2013,57:625-634.
[120]Zhu S G,Cheng Z G,Wang J,et al. Soil phosphorus availability and utilization are mediated by plant facilitation via rhizosphere interactions in an intercropping system[J]. European Journal of Agronomy,2023,142:126679
[121]Latati M,Blavet D,Alkama N,et al. The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil[J]. Plant and Soil,2014,385(1):181-191.
[122]Ma X M,Liu Y,Shen W J,et al. Phosphatase activity and acidification in lupine and maize rhizosphere depend on phosphorus availability and root properties:coupling zymography with planar optodes[J]. Applied Soil Ecology,2021,167:104029.
[123]Ma X M,Mason-Jones K,Liu Y,et al. Coupling zymography with pH mapping reveals a shift in lupine phosphorus acquisition strategy driven by cluster roots[J]. Soil Biology and Biochemistry,2019,135:420-428.
[124]Lykogianni M,Bempelou E,Karamaouna F,et al. Do pesticides promote or hinder sustainability in agriculture?The challenge of sustainable use of pesticides in modern agriculture[J]. Science of the Total Environment,2021,795:148625.
[125]范元芳,刘沁林,王锐,等. 玉米‖大豆带状间作对大豆生长、光合荧光特性及产量的影响[J]. 核农学报,2017,31(5):972-978.
[126]Liu X,Rahman T,Song C,et al. Changes in light environment,morphology,growth and yield of soybean in maize-soybean intercropping systems[J]. Field Crops Research,2017,200:38-46.
[127]Wu Y S,Gong W Z,Yang F,et al. Responses to shade and subsequent recovery of Soya bean in maize-soya bean relay strip intercropping[J]. Plant Production Science,2016,19(2):206-214.
[128]Zhang F S,Cui Z L,Fan M S,et al. Integrated soil-crop system management:reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China[J]. Journal of Environmental Quality,2011,40(4):1051-1057.
[129]Pelzer E,Bazot M,Makowski D,et al. Pea-wheat intercrops in low-input conditions combine high economic performances and low environmental impacts[J]. European Journal of Agronomy,2012,40:39-53.
[130]Himmelstein J,Ares A,Gallagher D,et al. A meta-analysis of intercropping in Africa:impacts on crop yield,farmer income,and integrated pest management effects[J]. International Journal of Agricultural Sustainability,2017,15(1):1-10.
[131]Xue Y F,Xia H Y,Christie P,et al. Crop acquisition of phosphorus,iron and zinc from soil in cereal/legume intercropping systems:a critical review[J]. Annals of Botany,2016,117(3):363-377.
[132]Zhou H P,Chen J L,Wang F,et al. An integrated irrigation strategy for water-saving and quality-improving of cash crops:Theory and practice in China[J]. Agricultural Water Management,2020,241:106331.
[133]Chen Z K,Li P,Jiang S S,et al. Evaluation of resource and energy utilization,environmental and economic benefits of rice water-saving irrigation technologies in a rice-wheat rotation system[J]. Science of the Total Environment,2021,757:143748.
[134]周泉,王龙昌,熊瑛,等. 绿肥间作和秸秆覆盖对冬季油菜根际土壤有机碳及土壤呼吸的影响[J]. 环境科学,2016,37(3):1114-1120.
[135]Yang L,Luo Y,Lu B L,et al. Long-term maize and pea intercropping improved subsoil carbon storage while reduced greenhouse gas emissions[J]. Agriculture,Ecosystems & Environment,2023,349:108444.
[136]Li H T,Fan Z L,Wang Q M,et al. Green manure and maize intercropping with reduced chemical N enhances productivity and carbon mitigation of farmland in arid areas[J]. European Journal of Agronomy,2023,145:126788.
[137]Della Chiesa T,Del Grosso S J,Hartman M D,et al. A novel mechanism to simulate intercropping and relay cropping using the DayCent model[J]. Ecological Modelling,2022,465:109869.
[138]Gou F,van Ittersum M K,van der Werf W. Simulating potential growth in a relay-strip intercropping system:Model description,calibration and testing[J]. Field Crops Research,2017,200:122-142.
[139]Li S W,van der Werf W,Zhu J Q,et al. Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping[J]. Journal of Experimental Botany,2021,72(10):3630-3646.

相似文献/References:

[1]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[2]王新华,尚赏,郭书亚,等.2BX型玉米/甘薯间作系统优势分析[J].江苏农业科学,2014,42(10):106.
 Wang Xinhua,et al.Superiority analysis of 2BX type corn/sweet potato intercropping system[J].Jiangsu Agricultural Sciences,2014,42(6):106.
[3]叶珺琳,郭国保,潘春香,等.间种芳香植物对蔬菜生长及虫害的影响[J].江苏农业科学,2014,42(08):143.
 Ye Junlin,et al.Effect of intercropping aromatic plants on growth and insects of vegetable[J].Jiangsu Agricultural Sciences,2014,42(6):143.
[4]熊军,闫海锋,韦绍丽,等.木薯+花生间作对作物光合特性、农艺性状和产量的影响[J].江苏农业科学,2016,44(06):165.
 Xiong Jun,et al.Effects of cassava and peanut intercropping on photosynthesis characteristics, agronomic traits and yield of crops[J].Jiangsu Agricultural Sciences,2016,44(6):165.
[5]付学鹏,吴凤芝,周新刚.间作防控作物土传病害的机理研究进展[J].江苏农业科学,2016,44(01):16.
 Fu Xuepeng,et al.Research progress on mechanism of plant soil-borne diseases control in intercropping system[J].Jiangsu Agricultural Sciences,2016,44(6):16.
[6]谢利,王燕芳,马超,等.棉花-孜然间作模式对土壤微生物数量及酶活性的影响[J].江苏农业科学,2015,43(10):103.
 Xie Li,et al.Effects of cotton and cumin intercropping pattern on soil microorganisms and enzyme activity[J].Jiangsu Agricultural Sciences,2015,43(6):103.
[7]齐付国,刘小飞,孙景生.不同供水水平对间作甜瓜叶片活性氧代谢及光合特性的影响[J].江苏农业科学,2015,43(09):199.
 Qi Fuguo,et al.Effects of different water treatments on active oxygen metabolism and photosynthetic characteristics of intercropping melon leaf[J].Jiangsu Agricultural Sciences,2015,43(6):199.
[8]郭素芬,兰阿峰,李丽霞.非寄主植物粗提物对小菜蛾幼虫的驱避作用[J].江苏农业科学,2015,43(04):164.
 Guo Sufen,et al.Repellent effect of crude extracts from non-host plants on diamondback moth larvae[J].Jiangsu Agricultural Sciences,2015,43(6):164.
[9]陈建斌,周志刚,李春苇,等.不同土壤氮、磷肥水平下间作大豆对玉米生长的影响[J].江苏农业科学,2014,42(07):94.
 Chen Jianbin,et al.Effect of intercropping soybean on growth of maize under different nitrogen and phosphorus levels[J].Jiangsu Agricultural Sciences,2014,42(6):94.
[10]李 宁,胡海珍,王明辉,等.鄂东南地区花生+棉花间作模式研究[J].江苏农业科学,2015,43(02):113.
 Li Ning,et al.Study on peanut-cotton intercropping mode in southeastern Hubei[J].Jiangsu Agricultural Sciences,2015,43(6):113.

备注/Memo

备注/Memo:
收稿日期:2024-02-22
基金项目:国家现代农业(食用豆)产业技术体系建设专项(编号:CARS-08-G-22);河北省省属高校基本科研业务费研究项目(编号:KY2022103);河北省水利科研与推广计划(编号:2017-54、2018-35);河北省节水灌溉装备产业技术研究院基金(编号:SC2018005)。
作者简介:高梦钒(1999—),男,河北石家庄人,硕士研究生,从事大田水肥调控研究。E-mail:20227080962@pgs.hebau.edu.cn。
通信作者:刘宏权,博士,教授,从事农业水土资源高效利用、水肥调控方面的教学科研工作。E-mail:lhq@hebau.cn。
更新日期/Last Update: 2025-03-20