|本期目录/Table of Contents|

[1]王培育,张春柳,李尊文,等.铁皮石斛TCP基因家族鉴定及其在不同色系铁皮石斛中对光照的响应[J].江苏农业科学,2025,53(6):48-56.
 Wang Peiyu,et al.Identification of TCP gene family in Dendrobium officinale and their response to light in different color systems of Dendrobium officinale[J].Jiangsu Agricultural Sciences,2025,53(6):48-56.
点击复制

铁皮石斛TCP基因家族鉴定及其在不同色系铁皮石斛中对光照的响应(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第6期
页码:
48-56
栏目:
生物技术
出版日期:
2025-03-20

文章信息/Info

Title:
Identification of TCP gene family in Dendrobium officinale and their response to light in different color systems of Dendrobium officinale
作者:
王培育12张春柳3李尊文12颜沛沛12江金兰12罗维鸿4叶炜12
1.三明市农业科学研究院,福建沙县 365051; 2.福建省(山区)作物遗传改良与创新利用重点实验室,福建沙县 365051; 3.福建省宁德市农业农村局,福建宁德 352100; 4.福建农林大学园艺植物生物工程研究所,福建福州 350002
Author(s):
Wang Peiyuet al
关键词:
铁皮石斛基因家族不同色系光照条件
Keywords:
-
分类号:
S567.23+9.01
DOI:
-
文献标志码:
A
摘要:
TCP基因家族是植物中特有的基因家族,利用生物信息学方法对铁皮石斛TCP基因家族进行全基因组鉴定,通过实时荧光定量PCR分析TCP基因家族成员在不同色系铁皮石斛对光照的响应模式。从铁皮石斛中共鉴定获得31个TCP成员。系统发育树将铁皮石斛TCP成员分为2类,每个成员均具有TCP基因家族特有的保守结构域。同时,相同亚群内TCP成员之间的保守基序相似性强,不同亚群之间保守基序差异较大。另外,启动子分析发现TCP家族成员中存在大量相同的光响应元件,但也存在特异性的元件,表明不同成员间光响应能力的差异性。转录组分析结果显示,不同色系铁皮石斛之间TCP转录因子成员的功能存在差异,同时同一品种铁皮石斛内不同TCP成员的功能存在差异。实时荧光定量PCR结果表明,在红色和绿色铁皮石斛中均存在特异性和普遍性响应光照强度变化的TCP基因家族成员,并且推测Do10016252和Do10014226这2个TCP成员可能是铁皮石斛变红的关键TCP成员。本研究初步探究了光照强度对TCP基因家族成员的影响,以期为进一步了解光照对TCP成员的作用提供参考。
Abstract:
-

参考文献/References:

[1]Cubas P,Lauter N,Doebley J,et al. The TCP domain:a motif found in proteins regulating plant growth and development[J]. Plant Journal,1999,18(2):215-222.
[2]Nicolas M,Cubas P. TCP factors:new kids on the signaling block[J]. Current Opinion in Plant Biology,2016,33:33-41.
[3]李文略,柳婷婷,陈常理,等. 植物TCP蛋白作用机制研究进展[J]. 分子植物育种,2023,21(14):4650-4658.
[4]Sun X D,Wang C D,Xiang N,et al. Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor[J]. Plant Biotechnology Journal,2017,15(10):1284-1294.
[5]Schommer C,Debernardi J M,Bresso E G,et al. Repression of cell proliferation by miR319-regulated TCP4[J]. Molecular Plant,2014,7(10):1533-1544.
[6]Luo D,Carpenter R,Vincent C,et al. Origin of floral asymmetry in Antirrhinum[J]. Nature,1996,383(6603):794-799.
[7]Yuan Z,Gao S,Xue D W,et al. RETARDED PALEA1 controls palea development and floral zygomorphy in rice[J]. Plant Physiology,2009,149(1):235-244.
[8]Li X,Zhuang L L,Ambrose M,et al. Genetic analysis of ele mutants and comparative mapping of ele1 locus in the control of organ internal asymmetry in garden pea[J]. Journal of Integrative Plant Biology,2010,52(6):528-535.
[9]Takeda T,Suwa Y,Suzuki M,et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. Plant Journal,2003,33(3):513-520.
[10]Aguilar-Martínez J A,Poza-Carrión C,Cubas P.Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. The Plant Cell,2007,19(2):458-472.
[11]Nag A,King S,Jack T. MiR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(52):22534-22539.
[12]Viola I L,Uberti Manassero N G,Ripoll R,et al. The Arabidopsis class Ⅰ TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain[J]. Biochemical Journal,2011,435(1):143-155.
[13]Lopez J A,Sun Y L,Blair P B,et al. TCP three-way handshake:linking developmental processes with plant immunity[J]. Trends in Plant Science,2015,20(4):238-245.
[14]Zhang C,Ding Z M,Wu K C,et al. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice[J]. Molecular Plant,2016,9(9):1302-1314.
[15]Song T Q,Ma Z C,Shen D Y,et al. An oomycete CRN effector reprograms expression of plant HSP genes by targeting their promoters[J]. PLoS Pathogens,2015,11(12):e1005348.
[16]Wang S T,Sun X L,Hoshino Y,et al. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.)[J]. PLoS One,2014,9(3):e91357.
[17]Viola I L,Camoirano A,Gonzalez D H. Redox-dependent modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15 during exposure to high light intensity conditions in Arabidopsis[J]. Plant Physiology,2016,170(1):74-85.
[18]Jagadhesan B,Sathee L,Meena H S,et al. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice[J]. Scientific Reports,2020,10(1):9368.
[19]Li T,Heuvelink E,Dueck T A,et al. Enhancement of crop photosynthesis by diffuse light:quantifying the contributing factors[J]. Annals of Botany,2014,114(1):145-156.
[20]Matos F S,Wolfgramm R,Gonalves F V,et al. Phenotypic plasticity in response to light in the coffee tree[J]. Environmental and Experimental Botany,2009,67(2):421-427.
[21]战吉宬,黄卫东,王利军. 植物弱光逆境生理研究综述[J]. 植物学通报,2003,38(1):43-50.
[22]Beneragama C K,Goto K. Chlorophyll a:b ratio increases under low-light in ‘shade-tolerant’ Euglena gracilis[J]. Tropical Agricultural Research,2011,22(1):12.
[23]王姝,周道玮. 植物表型可塑性研究进展[J]. 生态学报,2017,37(24):8161-8169.
[24]付信宝. 中药铁皮石斛主要化学成分及药理作用研究进展[J]. 商情,2018(33):146.
[25]张帮磊,杨豪男,沈晓静,等. 铁皮石斛化学成分及其药理功效研究进展[J]. 临床医药文献电子杂志,2019,6(54):3-5.
[26]王培育,罗维鸿,杨学,等. 泰斛1号种苗繁育及病虫害绿色防控效果探讨[J]. 福建农业科技,2022,53(10):56-59.
[27]Jia N,Wang J J,Liu J M,et al. DcTT8,a bHLH transcription factor,regulates anthocyanin biosynthesis in Dendrobium candidum[J]. Plant Physiology and Biochemistry,2021,162:603-612.
[28]Lin Y F,Chen Y Y,Hsiao Y Y,et al. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris[J]. Journal of Experimental Botany,2016,67(17):5051-5066.
[29]Liu D K,Zhang C L,Zhao X W,et al. Genome-wide analysis of the TCP gene family and their expression pattern in Cymbidium goeringii[J]. Frontiers in Plant Science,2022,13:1068969.
[30]Yao X,Ma H,Wang J,et al. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa[J]. Journal of Integrative Plant Biology,2007,49(6):885-897.
[31]张路阳,韩文龙,徐晓雯,等. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报,2023,39(6):248-258.
[32]Tran C D,Chu H D,Nguyen K H,et al. Genome-wide identification of the TCP transcription factor family in chickpea (Cicer arietinum L.) and their transcriptional responses to dehydration and exogenous abscisic acid treatments[J]. Journal of Plant Growth Regulation,2018,37(4):1286-1299.
[33]Leng X P,Wei H R,Xu X Z,et al. Genome-wide identification and transcript analysis of TCP transcription factors in grapevine[J]. BMC Genomics,2019,20(1):786.
[34]蒋梦琦,薛晓东,苏立遥,等. 龙眼TCP家族全基因组鉴定与表达分析[J]. 园艺学报,2021,48(12):2481-2496.
[35]Kosugi S,Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene[J]. The Plant Cell,1997,9(9):1607-1619.
[36]Parapunova V,Busscher M,Busscher-Lange J,et al. Identification,cloning and characterization of the tomato TCP transcription factor family[J]. BMC Plant Biology,2014,14:157.
[37]Nag A,King S,Jack T. MiR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(52):22534-22539.
[38]Doebley J,Stec A,Hubbard L. The evolution of apical dominance in maize[J]. Nature,1997,386(6624):485-488.
[39]Li Y T,Li L L,Yang J P,et al. Genome-wide identification and analysis of TCP gene family among three Dendrobium species[J]. Plants,2023,12(18):3201.
[40]Narbona E,Jaca J,Del Valle J C,et al. Whole-plant reddening in Silene germana is due to anthocyanin accumulation in response to visible light[J]. Plant Biology,2018,20(6):968-977.
[41]Karageorgou P,Manetas Y. The importance of being red when young:anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light[J]. Tree Physiology,2006,26(5):613-621.
[42]Gould K,Kuhn D N,Lee D W,et al. Why leaves are sometimes red[J]. Nature,1995,378:241-242.
[43]Zhang X H,Zheng X T,Sun B Y,et al. Over-expression of the CHS gene enhances resistance of Arabidopsis leaves to high light[J]. Environmental and Experimental Botany,2018,154:33-43.

相似文献/References:

[1]徐忠传,张玮,徐式近,等.Fe3O4和磁场处理对铁皮石斛原球茎生长的影响[J].江苏农业科学,2013,41(04):229.
[2]徐超,席刚俊,范克胜,等.不同氮源对铁皮石斛菌根真菌生长的影响[J].江苏农业科学,2013,41(04):236.
[3]张宇斌,陈婷,罗天霞,等.温度对铁皮石斛幼苗生长期光合速率的影响[J].江苏农业科学,2013,41(08):223.
 Zhang Yubin,et al.Effect of temperature on photosynthetic rate of Dendrobium officinale during seedling growth period[J].Jiangsu Agricultural Sciences,2013,41(6):223.
[4]徐忠传,倪歆晨,蔡国超,等.不同光质条件下磁处理水对铁皮石斛原球茎生长的影响[J].江苏农业科学,2013,41(08):226.
 Xu Zhongchuan,et al.Effects of magnetic water and light quality on protocorm growth of Dendrobium officinale[J].Jiangsu Agricultural Sciences,2013,41(6):226.
[5]徐忠传,曹秀,蔡国超,等.不同磁处理方法对铁皮石斛原球茎增殖生长的影响[J].江苏农业科学,2013,41(05):229.
 Xu Zhongchuan,et al.Effects of different magnetic treatments on proliferation growth of protocorm in[WTBX]Dendrobium officinale[WTBZ] Kimura et Migo[J].Jiangsu Agricultural Sciences,2013,41(6):229.
[6]余乐,兰芹英,姜宗庆.铁皮石斛离体快繁技术[J].江苏农业科学,2014,42(11):268.
 Yu Le,et al(8).Study on in vitro rapid propagation of Dendrobium officinale Kimura et Migo[J].Jiangsu Agricultural Sciences,2014,42(6):268.
[7]潘梅,吕德任,姜殿强,等.铁皮石斛袋式组培快繁技术研究[J].江苏农业科学,2013,41(10):37.
 Pan Mei,et al.Study on tissue culture and rapid propagation technology of Dendrobium candidum using transparent polypropylene film bag as culture vessel[J].Jiangsu Agricultural Sciences,2013,41(6):37.
[8]史骥清,李娟,赵锋,等.乙烯利对铁皮石斛除蕾及其品质的影响[J].江苏农业科学,2013,41(07):228.
 Shi Jiqing,et al.Effect of ethephon on buds removing and quality of Dendrobium officinale[J].Jiangsu Agricultural Sciences,2013,41(6):228.
[9]冯霞,赵欣.铁皮石斛水提物对SD大鼠胃损伤的预防效果[J].江苏农业科学,2013,41(07):294.
 Feng Xia,et al.Preventive effect of Dendrobium candidum aqueous extract on gastric injury of SD-rats[J].Jiangsu Agricultural Sciences,2013,41(6):294.
[10]邹娜,喻苏琴,王春玲,等.铁皮石斛组织培养及试管开花研究[J].江苏农业科学,2013,41(12):42.
 Zou Na,et al.Study on tissue culture and in vitro flowering of Dendrobium candidum[J].Jiangsu Agricultural Sciences,2013,41(6):42.
[11]刘博婷,唐演儿,李琳,等.铁皮石斛酸性蔗糖转化酶基因家族鉴定及低温下表达分析[J].江苏农业科学,2022,50(24):33.
 Liu Boting,et al.Identification of acid sucrose invertase gene family in Dendrobium catenatum Lindl. and its expression analysis under low temperature[J].Jiangsu Agricultural Sciences,2022,50(6):33.

备注/Memo

备注/Memo:
收稿日期:2024-03-27
基金项目:福建省农业引导(重点)项目(编号:2021N0046);福建省特色现代农业发展专项(编号:2023-NY-01)。
作者简介:王培育(1990—),男,福建晋江人,硕士,助理研究员,研究方向为药用植物育种及栽培。E-mail:404761990@qq.com。
通信作者:叶炜,博士,副研究员,研究方向为药用植物种质资源收集及育种。E-mail:yewei922@qq.com。
更新日期/Last Update: 2025-03-20