[1]Guiza M,Benabdelrahim M A,Brini F,et al. Assessment of alfalfa (Medicago sativa L.) cultivars for salt tolerance based on yield,growth,physiological,and biochemical traits[J]. Journal of Plant Growth Regulation,2022,41(8):3117-3126.
[2]Smith S E,Read D. The symbionts forming arbuscular mycorrhizas[M]//Mycorrhizal symbiosis. Amsterdam:Elsevier,2008:13-41.
[3]Liang S C,Jiang Y,Li M B,et al. Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings[J]. Journal of Plant Interactions,2019,14(1):482-491.
[4]曹磊,李逸雯,凌康杰,等. 盐渍化胁迫下接种不同丛枝菌根真菌对番茄耐盐性的影响[J]. 福建农业学报,2022,37(2):188-196.
[5]Zhang D J,Tong C L,Wang Q S,et al. Mycorrhizas affect physiological performance,antioxidant system,photosynthesis,endogenous hormones,and water content in cotton under salt stress[J]. Plants,2024,13(6):805.
[6]张金莲,李铭燕,康贻豪,等. 14种AM真菌对枳生长的影响[J]. 热带作物学报,2021,42(11):3278-3283.
[7]Chandrasekaran M,Chanratana M,Kim K,et al. Impact of arbuscular mycorrhizal fungi on photosynthesis,water status,and gas exchange of plants under salt stress:a meta-analysis[J]. Frontiers in Plant Science,2019,10:457.
[8]Klinsukon C,Lumyong S,Kuyper T W,et al. Colonization by arbuscular mycorrhizal fungi improves salinity tolerance of Eucalyptus (Eucalyptus camaldulensis) seedlings[J]. Scientific Reports,2021,11(1):4362.
[9]初建香,张立中. 紫花苜蓿的品质特性及其在动物生产中的应用[J]. 中国饲料,2022(11):91-95.
[10]毛庆莲,王胜. 国内盐碱地治理趋势探究浅析[J]. 湖北农业科学,2020,59(增刊1):302-306.
[11]Song L L,Ding W,Zhao M G,et al. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed[J]. Plant Science,2006,171(4):449-458.
[12]李娇娇,曾明. 丛枝菌根对植物根际逆境的生态学意义[J]. 应用生态学报,2020,31(9):3216-3226.
[13]刘宇乐,姜宛彤,苏文欣,等. 丛枝菌根真菌调控植物耐盐碱机制研究进展[J]. 江苏农业科学,2022,50(19):9-17.
[14]阮仕琴,陶刚,娄璇,等. 丛枝菌根真菌生态功能及其与共生植物互作机理[J]. 中国土壤与肥料,2022(5):237-244.
[15]赵华,任晴雯,王熙予,等. 丛枝菌根真菌对盐胁迫下番茄抗氧化酶活性和光合特性的影响[J]. 浙江农业学报,2021,33(11):2075-2084.
[16]张淑彬,纪晶晶,王幼珊,等. 内蒙古露天煤矿区回填土壤具生态适应能力丛枝菌根真菌的筛选[J]. 生态学报,2009,29(7):3729-3736.
[17]谭英,尹豪. 盐胁迫下根施 AMF和褪黑素对紫花苜蓿生长、光合特征以及抗氧化系统的影响[J]. 草业学报,2024,33(6):64-75.
[18]温琦,赵文博,张幽静,等. 植物干旱胁迫响应的研究进展[J]. 江苏农业科学,2020,48(12):11-15.
[18]夏华美,曹志坚,于铭玥,等. 30 份草地早熟禾苗期耐盐性综合评价[J]. 草业科学,2023,40(12):3124-3137.
[20]Qin W J,Yan H Y,Zou B Y,et al. Arbuscular mycorrhizal fungi alleviate salinity stress in peanut:evidence from pot-grown and field experiments[J]. Food and Energy Security,2021,10(4):e314.
[21]龚远博,胡吉怀,胡丁猛,等. 丛枝菌根真菌对盐碱胁迫下杜梨幼苗生长和生理特性的影响[J]. 西北植物学报,2022,42(8):1320-1329.
[22]胡爱双,张小栋,郭文静,等. 盐胁迫下八棱海棠株系的离子吸收、运输与分配[J]. 植物生理学报,2021,57(9):1829-1838.
[23]Abbaspour H,Pour F S N,Abdel-Wahhab M A. Arbuscular mycorrhizal symbiosis regulates the physiological responses,ion distribution and relevant gene expression to trigger salt stress tolerance in pistachio[J]. Physiology and Molecular Biology of Plants,2021,27(8):1765-1778.
[24]Ait-El-Mokhtar M,Baslam M,Ben-Laouane R,et al. Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost[J]. Frontiers in Sustainable Food Systems,2020,4:131.
[25]Tomar N S,Agarwal R M.Influence of treatment of Jatropha curcas L.leachates and potassium on growth and phytochemical constituents of wheat (Triticum aestivum L.)[J]. American Journal of Plant Sciences,2013,4(5):1134-1150.
[26]Liang W J,Ma X L,Wan P,et al. Plant salt-tolerance mechanism:a review[J]. Biochemical and Biophysical Research Communications,2018,495(1):286-291.
[27]余忆,汪伟,万何平,等. 盐胁迫下氮素对生菜形态建成及生理生化特性的影响[J]. 江苏农业科学,2023,51(17):165-170.
[28]熊雪,桂维阳,刘沫含,等. 不同紫花苜蓿品种在均匀与不均匀盐胁迫下的耐盐性评价[J]. 草业学报,2018,27(9):67-76.
[29]向雪纯,张云玲,李培英. 4种藜科植物萌发期耐盐性[J]. 草业科学,2022,39(10):2151-2159.
[1]朱强,邹梦辉,安黎,等.琼花对4种草坪植物的化感作用[J].江苏农业科学,2014,42(10):172.
Zhu Qiang,et al.Allelopathy of Viburnum macrocephalum to four turfgrass plants[J].Jiangsu Agricultural Sciences,2014,42(6):172.
[2]王小山,朱平华,鲍国成,等.盐碱胁迫对紫花苜蓿根、茎和叶重要养分离子平衡的影响[J].江苏农业科学,2013,41(07):190.
Wang Xiaoshan,et al.Effect of salt stress on important nutrient ion balance in roots,stems and leaves of Medicago sativa[J].Jiangsu Agricultural Sciences,2013,41(6):190.
[3]田福平,李锦华,张怀山,等.耐旱丰产紫花苜蓿新品系杂选1号的选育及栽培技术[J].江苏农业科学,2013,41(10):92.
Tian Fuping,et al.Breeding and cultivation techniques of new Medicago sativa lines “Zaxuan No.1”[J].Jiangsu Agricultural Sciences,2013,41(6):92.
[4]杨杰,谷陈建,吴豪杰,等.有机肥和紫花苜蓿对长期抛荒贫瘠土壤的改良效果[J].江苏农业科学,2013,41(12):362.
Yang Jie,et al.Comparison of improved effects of organic fertilizer and alfalfa on long-abandoned barren soils[J].Jiangsu Agricultural Sciences,2013,41(6):362.
[5]周恒,时永杰,路远,等.不同种植年限紫花苜蓿种植地土壤容重及含水量特征[J].江苏农业科学,2016,44(05):490.
Zhou Heng,et al.Study on soil bulk density and soil water content in alfalfa field with different growing years[J].Jiangsu Agricultural Sciences,2016,44(6):490.
[6]张丽辉,贾泽君,孙奇,等.2种紫花苜蓿幼苗生长对光照度的可塑性响应[J].江苏农业科学,2015,43(12):263.
Zhang Lihui,et al.Plasticity response of seedling growth of two Medicago sativa species to light intensity[J].Jiangsu Agricultural Sciences,2015,43(6):263.
[7]刘胜洪,周玲艳,杨妙贤,等.60Co-γ射线诱变紫花苜蓿WL525HQ的SSR研究[J].江苏农业科学,2015,43(07):238.
Liu Shenghong,et al..Study on 60Co-γ radiation inducing Medicago sativa based on SSR[J].Jiangsu Agricultural Sciences,2015,43(6):238.
[8]吴晓卫,付瑞敏,郭彦钊,等.耐盐碱微生物复合菌剂的选育、复配及其
对盐碱地的改良效果[J].江苏农业科学,2015,43(06):346.
Wu Xiaowei,et al.Breeding and combination of saline-alkaline-tolerant microbes and their ameliorative effect on saline soils[J].Jiangsu Agricultural Sciences,2015,43(6):346.
[9]李玉波,许清涛,高标,等.脱硫石膏改良盐碱地对紫花苜蓿生长的影响[J].江苏农业科学,2015,43(03):188.
Li Yubo,et al.Effect of saline-alkali land improved by desulfurization gypsum on growth of Medicago sativa[J].Jiangsu Agricultural Sciences,2015,43(6):188.
[10]张丽辉,蒋远玲,张学凡,等.变温与采后贮藏时间协同作用对紫花苜蓿种子萌发的影响[J].江苏农业科学,2016,44(08):313.
Zhang Lihui,et al.Synergistic effects of variable temperature and postharvest storage time on germination characteristics of Medicago sativa seed[J].Jiangsu Agricultural Sciences,2016,44(6):313.