|本期目录/Table of Contents|

[1]马红义,李珊,曹爽,等.MAPK级联调控作物响应生物胁迫的研究进展[J].江苏农业科学,2024,52(6):1-10.
 Ma Hongyi,et al.Research progress of MAPK cascade regulation of crop response to biological stress[J].Jiangsu Agricultural Sciences,2024,52(6):1-10.
点击复制

MAPK级联调控作物响应生物胁迫的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第6期
页码:
1-10
栏目:
专论与综述
出版日期:
2024-03-20

文章信息/Info

Title:
Research progress of MAPK cascade regulation of crop response to biological stress
作者:
马红义李珊曹爽李承男尹晓
宁夏大学葡萄酒与园艺学院,宁夏银川750021
Author(s):
Ma Hongyiet al
关键词:
MAPK级联作物生物胁迫信号转导
Keywords:
-
分类号:
S184
DOI:
-
文献标志码:
A
摘要:
促分裂原活化蛋白激酶(MAPK)是一种蛋白激酶,可以催化底物蛋白质磷酸化,MAPK级联则是植物中高度保守的信号转导模块,将细胞外刺激转导为细胞内反应,在植物信号转导生物胁迫中起着非常重要的作用。植物MAPK的早期研究主要集中在模式植物拟南芥的功能上。基于全基因组测序的结果显示,许多MAPKs已在大田作物和园艺作物中被鉴定,如水稻、小麦、玉米、苹果、葡萄和番茄等。生物胁迫(如病害、虫害和杂草危害等)是作物面临的重大挑战,开展作物MAPK级联信号通路在生物胁迫下的机理研究至关重要。本文对植物MAPK级联及其3个成员MAPKKK、MAPKK、MAPK基因进行分类,并简要介绍MAPKKK、MAPKK、MAPK各亚家族的成员和基本特征。此外,对近些年模式植物拟南芥,大田作物水稻、玉米、小麦和马铃薯等以及一些重要的园艺作物苹果、葡萄、香蕉和梨等的MAPK信号通路响应生物胁迫(如病原菌感染、病毒攻击)进行分析和归纳总结,并对其进一步的研究工作进行展望,为MAPK级联调控响应生物胁迫在未来的研究过程中提供参考。
Abstract:
-

参考文献/References:

[1]陈永快,王涛,廖水兰,等. 逆境及生长调节剂对作物抗逆性的影响综述[J]. 江苏农业科学,2019,47(23):68-72.
[2]刘长英. 桑树G蛋白信号基因的鉴定与非生物胁迫调控分子机理研究[D]. 重庆:西南大学,2018:19-29.
[3]朱晓果. 小麦条锈菌MAPK信号通路介导的致病机理及其在抗锈育种中的应用[D]. 杨凌:西北农林科技大学,2017:16-29.
[4]陈亮,侯岁稳. 植物气孔发育的分子遗传调控[J]. 中国科学(生命科学),2017,47(8):798-807.
[5]Zhao F Y,Hu F,Zhang S Y,et al. MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice[J]. Environmental Science and Pollution Research,2013,20(8):5449-5460.
[6]许燕. OsMPK4在早期胚胎形成中的功能及水稻MAPK功能获得型系统构建[D]. 杭州:浙江大学,2020:13-30.
[7]单鸿轩,付畅. 逆境胁迫下植物MAPK级联反应途径研究新进展[J]. 核农学报,2017,31(4):680-688.
[8]Lee H K,Cho S K,Son O,et al. Drought stress-induced Rma1H1,a RING membrane-anchor E3 ubiquitin ligase homolog,regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants[J]. The Plant Cell,2009,21(2):622-641.
[9]郝丽芬,燕孟娇,房永雨,等. 黑胫病菌侵染过程中油菜响应基因的表达分析[J]. 西北植物学报,2021,41(2):197-211.
[10]刘亚菲,张帆,梁卫红. 水稻MAPK级联的功能和作用机制[J]. 中国生物化学与分子生物学报,2021,37(12):1569-1576.
[11]Cristina M,Petersen M,Mundy J.Mitogen-activated protein kinase signaling in plants[J]. Annual Review of Plant Biology,2010,61:621-649.
[12]张文宣,梁晓梅,戴成,等. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报,2023,49(2):321-331.
[13]张振才,梁燕,李翠. 植物MAPK级联途径及其功能研究进展[J]. 西北农林科技大学学报(自然科学版),2014,42(4):207-214.
[14]Xie C,Yang L,Gai Y P.MAPKKKs in plants:multidimensional regulators of plant growth and stress responses[J]. International Journal of Molecular Sciences,2023,24(4):4117.
[15]Zhou H Y,Ren S Y,Han Y F,et al. Identification and analysis of mitogen-activated protein kinase (MAPK) cascades in Fragaria vesca[J]. International Journal of Molecular Sciences,2017,18(8):1766.
[16]de Zelicourt A,Colcombet J,Hirt H.The role of MAPK modules and ABA during abiotic stress signaling[J]. Trends in Plant Science,2016,21(8):677-685.
[17]Zhou M Y,Zhao B B,Li H S,et al. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation[J]. Genomics,2022,114(2):110311.
[18]Salisu B S. 陆地棉非生物胁迫相关MAPK基因的功能分析[D]. 北京:中国农业科学院,2021:19-23.
[19]濮雪,王凯彤,张宁,等. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报,2023,49(1):36-45.
[20]Colcombet J,Hirt H. Arabidopsis MAPKs:a complex signalling network involved in multiple biological processes[J]. Biochemical Journal,2008,413(2):217-226.
[21]Rohila J S,Yang Y N. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response[J]. Journal of Integrative Plant Biology,2007,49(6):751-759.
[22]周秒依,任雯,赵冰兵,等. 植物MAPK级联途径应答的非生物胁迫研究进展[J]. 中国农业科技导报,2020,22(2):22-29.
[23]Wang M,Yue H,Feng K W,et al. Genome-wide identification,phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.)[J]. BMC Genomics,2016,17(1):668.
[24]Zhan H S,Yue H,Zhao X,et al. Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.)[J]. Genes,2017,8(10):284.
[25]Iftikhar H,Naveed N,Virk N,et al. In silico analysis reveals widespread presence of three gene families,MAPK,MAPKK and MAPKKK,of the MAPK cascade from crop plants of Solanaceae in comparison to the distantly-related syntenic species from Rubiaceae,coffee[J]. Peer J,2017,5:e3255.
[26]Yin Z J,Zhu W D,Zhang X P,et al. Molecular characterization,expression and interaction of MAPK,MAPKK and MAPKKK genes in upland cotton[J]. Genomics,2021,113(1):1071-1086.
[27]Sun M H,Xu Y,Huang J G,et al. Global identification,classification,and expression analysis of MAPKKK genes:functional characterization of MdRaf5 reveals evolution and drought-responsive profile in apple[J]. Scientific Reports,2017,7:13511.
[28]akr B,Klkaya O.Mitogen-activated protein kinase cascades in Vitis vinifera[J]. Frontiers in Plant Science,2015,6:556.
[29]Wang L Z,Hu W,Tie W W,et al. The MAPKKK and MAPKK gene families in banana:identification,phylogeny and expression during development,ripening and abiotic stress[J]. Scientific Reports,2017,7:1159.
[30]Liang Q,Lin X J,Liu J H,et al. Genome-wide identification of MAPKK and MAPKKK gene family members and transcriptional profiling analysis during bud dormancy in pear (Pyrus×bretschneideri)[J]. Plants,2022,11(13):1731.
[31]Kong F L,Wang J,Cheng L,et al. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum[J]. Gene,2012,499(1):108-120.
[32]Wang J,Pan C T,Wang Y,et al. Genome-wide identification of MAPK,MAPKK,and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber[J]. BMC Genomics,2015,16(1):386.
[33]Wu P,Wang W L,Li Y,et al. Divergent evolutionary patterns of the MAPK cascade genes in Brassica rapa and plant phylogenetics[J]. Horticulture Research,2017,4:17079.
[34]李娜. 条斑紫菜PyMAPK2/3在逆境胁迫下的表达分析及MAPKKK基因家族的特性解析[D]. 青岛:中国海洋大学,2018:6-27.
[35]许机分,陈泓妃,王娜,等. 真菌Hog1 MAPK信号通路研究进展[J]. 生物技术通报,2022,38(11):32-40.
[36]李子正,隋鲁鹏,张蕾蕾,等. 植物内生昆虫病原真菌在病虫害防治中的研究进展[J]. 中国植保导刊,2022,42(12):18-28.
[37]周琪,付畅. 植物MAPK基因及其在逆境胁迫下的作用[J]. 黑龙江农业科学,2015(5):149-152.
[38]柯晶晶. 青枯菌果胶外切酶PehC介导的番茄免疫与应用潜能[D]. 武汉:华中农业大学,2022:1-28.
[39]钱恒伟,迟梦宇,赵颖,等. 稻瘟菌Rac1蛋白的原核表达与纯化[J]. 青岛农业大学学报(自然科学版),2017,34(2):126-132.
[40]Asai T,Tena G,Plotnikova J,et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature,2002,415(6875):977-983.
[41]Kong Q,Qu N,Gao M,et al. The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis[J]. Plant Cell,2012,24(5),2225-2236.
[41]Kong Q,Qu N,Gao M H,et al. The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis[J]. The Plant Cell,2012,24(5):2225-2236.
[42]Zhao C Z,Nie H Z,Shen Q J,et al. EDR1 physically interacts with MKK4/MKK5 and negatively regulates a MAP kinase cascade to modulate plant innate immunity[J]. PLoS Genetics,2014,10(5):e1004389.
[43]Wang X Y,Meng H C,Tang Y X,et al. Phosphorylation of an ethylene response factor by MPK3/MPK6 mediates negative feedback regulation of pathogen-induced ethylene biosynthesis in Arabidopsis[J]. Journal of Genetics and Genomics,2022,49(8):810-822.
[44]Sun T J,Nitta Y,Zhang Q,et al. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling[J]. EMBO Reports,2018,19(7):e45324.
[45]Xu J,Meng J,Meng X Z,et al. Pathogen-responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity[J]. The Plant Cell,2016,28(5):1144-1162.
[46]Su J B,Zhang M M,Zhang L,et al. Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid[J]. The Plant Cell,2017,29(3):526-542.
[47]Bi G Z,Zhou Z Y,Wang W B,et al. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis[J]. The Plant Cell,2018,30(7):1543-1561.
[48]Yin Z Y,Feng W Z,Chen C,et al. Shedding light on autophagy coordinating with cell wall integrity signaling to govern pathogenicity of Magnaporthe oryzae[J]. Autophagy,2020,16(5):900-916.
[49]Jalmi S K,Sinha A K.Functional involvement of a mitogen activated protein kinase module,OsMKK3-OsMPK7-OsWRK30 in mediating resistance against Xanthomonas oryzae in rice[J]. Scientific Reports,2016,6:37974.
[50]Ma H G,Chen J E,Zhang Z Z,et al. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice[J]. The Plant Journal,2017,92(4):557-570.
[51]Shen X L,Liu H B,Yuan B,et al. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis[J]. Plant,Cell & Environment,2011,34(2):179-191.
[52]Chen J,Wang L H,Yang Z Y,et al. The rice raf-like MAPKKK OsILA1 confers broad-spectrum resistance to bacterial blight by suppressing the OsMAPKK4-OsMAPK6 cascade[J]. Journal of Integrative Plant Biology,2021,63(10):1815-1842.
[53]Zhang H H,Chen C H,Li L L,et al. A rice LRR receptor-like protein associates with its adaptor kinase OsSOBIR1 to mediate plant immunity against viral infection[J]. Plant Biotechnology Journal,2021,19(11):2319-2332.
[54]王梅娟. 玉米大斑病菌CWI-MAPK级联途径中StBCK1基因功能的研究[D]. 保定:河北农业大学,2012:10-13.
[55]Pan J W,Zhang M Y,Kong X P,et al. ZmMPK17,a novel maize group D MAP kinase gene,is involved in multiple stress responses[J]. Planta,2012,235(4):661-676.
[56]Wei J P,Wang X D,Hu Z Y,et al. The Puccinia striiformis effector Hasp98 facilitates pathogenicity by blocking the kinase activity of wheat TaMAPK4[J]. Journal of Integrative Plant Biology,2023,65(1):249-264.
[57]Yamamizo C,Kuchimura K,Kobayashi A,et al. Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance[J]. Plant Physiology,2006,140(2):681-692.
[58]Du Y,Chen X K,Guo Y L,et al. Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity[J]. The New Phytologist,2021,229(1):501-515.
[59]Chen X K,Wang W B,Cai P P,et al. The role of the MAP kinase-kinase protein StMKK1 in potato immunity to different pathogens[J]. Horticulture Research,2021,8:117.
[60]Zhang H X,Li F F,Li Z Z,et al. Potato StMPK7 is a downstream component of StMKK1 and promotes resistance to the oomycete pathogen Phytophthora infestans[J]. Molecular Plant Pathology,2021,22(6):644-657.
[61]Virk N,Liu B,Zhang H J,et al. Tomato SlMPK4 is required for resistance against Botrytis cinerea and tolerance to drought stress[J]. Acta Physiologiae Plantarum,2013,35(4):1211-1221.
[62]刘杰. 马铃薯种质资源的晚疫病抗性评价及转录组分析[D]. 呼和浩特:内蒙古农业大学,2019:1-15.
[63]Majeed Y,Zhu X,Zhang N,et al. Functional analysis of mitogen-activated protein kinases (MAPKs) in potato under biotic and abiotic stress[J]. Molecular Breeding,2022,42(6):31.
[64]Zhai N,Jia H H,Liu D D,et al. GhMAP3K65,a cotton raf-like MAP3K gene,enhances susceptibility to pathogen infection and heat stress by negatively modulating growth and development in transgenic Nicotiana benthamiana[J]. International Journal of Molecular Sciences,2017,18(11):2462.
[65]Wang C,He X W,Li Y Z,et al. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade[J]. Molecular Plant Pathology,2018,19(7):1624-1638.
[66]Shan D Q,Wang C Y,Zheng X D,et al. MKK4-MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to Glomerella leaf spot in apple[J]. Plant Physiology,2021,186(2):1202-1219.
[67]郑婷. 葡萄伤流期树液成分鉴定及其抗病功能研究[D]. 南京:南京农业大学,2019:15-31.
[68]Wang G,Lovato A,Polverari A,et al. Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera)[J]. BMC Plant Biology,2014,14:219.
[69]王刚. 葡萄MAPK类基因家族的鉴定、表达分析及部分基因的功能验证[D]. 南京:南京农业大学,2014:65-115.
[70]雷龑,陈婷,刘鑫铭,等. 刺葡萄VdMAPK7参与炭疽病胁迫响应的功能分析[J]. 果树学报,2022,39(11):2036-2045.
[71]Wang Z,Jia C H,Li J P,et al. Identification of six mitogen-activated protein kinase (MAPK) genes in banana (Musa acuminata L. AAA group,cv.Cavendish) under infection of Fusarium Oxysporum f.sp cubense Tropical Race 4[J]. Acta Physiologiae Plantarum,2015,37(6):115.
[72]Zhang Z,Jia L T,Chen Q M,et al. Genome-wide identification of the mitogen-activated protein kinase kinase kinase (MAPKKK) in pear (Pyrus bretschneideri) and their functional analysis in response to black spot[J]. Planta,2023,257(1):5.
[73]Zhao L N,Shu Y L,Quan S H,et al. Screening and regulation mechanism of key transcription factors of Penicillium expansum infecting postharvest pears by ATAC-seq analysis[J]. Foods,2022,11(23):3855.
[74]Xu Y,Shang K J,Wang C C,et al. WIPK-NtLTP4 pathway confers resistance to Ralstonia solanacearum in tobacco[J]. Plant Cell Reports,2022,41(1):249-261.
[75]Tajti J,Németh E,Glatz G,et al. Pattern of changes in salicylic acid- induced protein kinase (SIPK) gene expression and salicylic acid accumulation in wheat under cadmium exposure[J]. Plant Biology,2019,21(6):1176-1180.
[76]Melech-Bonfil S,Sessa G.Tomato MAPKKKε is a positive regulator of cell-death signaling networks associated with plant immunity[J]. The Plant Journal,2010,64(3):379-391.
[77]Kandoth P K,Ranf S,Pancholi S S,et al. Tomato MAPKs LeMPK1,LeMPK2,and LeMPK3 function in the systemin-mediated defense response against herbivorous insects[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(29):12205-12210.
[78]Gao J,Cao M N,Ye W W,et al. PsMPK7,a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae,is required for stress tolerance,reactive oxygenated species detoxification,cyst germination,sexual reproduction and infection of soybean[J]. Molecular Plant Pathology,2015,16(1):61-70.
[79]Ferrusquía-Jiménez N I,Serrano-Jamaica L M,Martínez-Camacho J E,et al. Extracellular self-DNA plays a role as a damage-associated molecular pattern (DAMP) delaying zoospore germination rate and inducing stress-related responses in Phytophthora capsici[J]. Plant Pathology,2022,71(5):1066-1075.
[80]王淑霞. 木霉诱导黄瓜对灰霉病的系统抗性及其机理研究[D]. 石家庄:河北师范大学,2012:11-53.
[81]Xiao X O,Lin W Q,Feng E Y,et al. Genome-wide identification of binding sites for SmTCP7a transcription factors of eggplant during bacterial wilt resistance by ChIP-seq[J]. International Journal of Molecular Sciences,2022,23(12):6844.
[82]Jiang S F,Zheng W W,Li Z W,et al. Enhanced resistance to Sclerotinia sclerotiorum in Brassica rapa by activating host immunity through exogenous Verticillium dahliae Aspf2-like protein (VDAL) treatment[J]. International Journal of Molecular Sciences,2022,23(22):13958.
[83]崔雯,白雪松,王建,等. 脱落酸调控与植物抗病相关次生代谢产物生物合成的研究进展[J]. 植物医学,2022,1(6):1-11.

相似文献/References:

[1]谢斌,吴文良,郭岩彬,等.作物富硒研究进展[J].江苏农业科学,2014,42(01):15.
 Xie Bin,et al.Research progress of selenium enrichment of crops[J].Jiangsu Agricultural Sciences,2014,42(6):15.
[2]赵媛,卢凤英.作物内生菌研究进展[J].江苏农业科学,2015,43(10):20.
 Zhao Yuan,et al.Research progress on plant endophytic fungus[J].Jiangsu Agricultural Sciences,2015,43(6):20.
[3]张晴晴,齐国红,张云龙.基于改进分水岭算法的作物病害叶片分割方法[J].江苏农业科学,2015,43(02):400.
 Zhang Qingqing,et al.Crop disease leaf segmentation method based on improved watershed algorithm[J].Jiangsu Agricultural Sciences,2015,43(6):400.
[4]张 兵,韩 霞,庄 斌,等.介电特性在作物需水诊断中的应用研究进展[J].江苏农业科学,2015,43(02):7.
 Zhang Bing,et al.Research progress on application of dielectric property in diagnosis of crop water demand[J].Jiangsu Agricultural Sciences,2015,43(6):7.
[5]纪荣婷,闵炬,黄程鹏,等.光谱仪在作物施氮推荐中的应用研究进展——以GreenSeeker光谱仪为例[J].江苏农业科学,2017,45(02):9.
 Ji Rongting,et al.Research progress on application of spectrometer in nitrogen fertilizer recommendation—Taking GreenSeeker as an example[J].Jiangsu Agricultural Sciences,2017,45(6):9.
[6]林英,司春灿,黄莉萍,等.纳米技术在作物病害防治中的应用研究进展[J].江苏农业科学,2017,45(11):11.
 Lin Ying,et al.Research progress on application of nanotechnology in crop disease control[J].Jiangsu Agricultural Sciences,2017,45(6):11.
[7]黄维,杨沈斌,石春林,等.苏皖鄂地区一季稻产量灾损的风险区划[J].江苏农业科学,2018,46(03):219.
 Huang Wei,et al.Risk regionalization of yield losses of single-season rice in Jiangsu,Anhui and Hubei provinces[J].Jiangsu Agricultural Sciences,2018,46(6):219.
[8]杨鸿波,廖朝选,赵亚洲,等.3种作物初期生长对全氟辛烷磺酸盐和全氟辛酸的响应及富集特征[J].江苏农业科学,2018,46(15):232.
 Yang Hongbo,et al.Response and enrichment characteristics of initial growth of three crops to perfluorooctane sulphonate and perfluorooctanoic acid[J].Jiangsu Agricultural Sciences,2018,46(6):232.
[9]赵子娟,刘东,杭中桥.作物遥感识别方法研究现状及展望[J].江苏农业科学,2019,47(16):45.
 Zhao Zijuan,et al.Research status and prospect of crop remote sensing identification methods[J].Jiangsu Agricultural Sciences,2019,47(6):45.
[10]徐丽萍,梁乐缤,李兵,等.不同修复技术对土壤有效态镉含量及作物镉吸收的影响[J].江苏农业科学,2022,50(1):207.
 Xu Liping,et al.Effects of different remediation techniques on soil available cadmium contents and crop cadmium uptake[J].Jiangsu Agricultural Sciences,2022,50(6):207.

备注/Memo

备注/Memo:
收稿日期:2023-04-18
基金项目:宁夏自然科学基金(编号:2022AAC03010);宁夏重点研发计划(编号:2022BBF03004)。
作者简介:马红义(1998—),男,宁夏隆德人,硕士研究生,从事果树分子育种相关研究。E-mail:mhy15709587677@163.com。
通信作者:尹晓,博士,讲师,从事果树分子育种教学和相关研究。E-mail:yinxiao90@nxu.edu.cn。
更新日期/Last Update: 2024-03-20