[1]Tanguy A M,Coriton O,Abélard P,et al. Structure of aegilops ventricosa chromosome 6NV,the donor of wheat genes Yr17,Lr37,Sr38,and Cre5[J]. Genome,2005,48(3):541-546.
[2]Huguet-Robert V,Dedryver F,Korzun V,et al. Isolation of a chromosomally engineered durum wheat line carrying the Aegilops ventricosa Pchl gene for resistance to eyespot[J]. Genome,2001,44(3):345-349.
[3]Jahier J,Abélard P,Tanguy A M,et al. The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar ‘VPM1’ carries the cereal cyst nematode resistance gene Cre5[J]. Plant Breeding,200l,120:125-128.
[4]Seah S,Bariana H,Jahier J,et al. The introgressed segment carrying rust resistance genes Yrl7,Lr37 and Sr38 in wheat call be assayed by a cloned disease resistance gene-like sequence[J]. Theoretical and Applied Genetics,2001,102:600-605.
[5]Robert O,Abelard C,Dedryver F. Identification of molecular markers for the detection of the yellow rest resistance gene Yr17 in wheat[J]. Molecular Breeding,1999,5:167-175.
[6]Delibes A,Moral J D,Marttn-Sanchez J A,et al. Hessian fly-resistance gene transferred from chromosome 4MV of Aegilops ventricosa to Triticum aestivurm[J]. Theoretical and Applied Genetics,1997,94:858-864.
[7]Montes M J,López-Braa I,Romero M D,et al. Biochemical and genetic studies of two Heterodera avenae resistance genes transferred from Aegilops ventricosa to wheat[J]. Theoretical and Applied Genetics,2003,107(4):611-618.
[8]Ogbonnaya F C,Seah S,Delibes A,et al. Moleculargenetic characterization of a new nematode resistance gene in wheat[J]. Theoretical and Applied Genetics,2001,102:623-629.
[9]Zaharieva M,Prosperi J M,Monneveux P. Ecological distribution and species diversity of Aegilops L. genus in Bulgaria[J]. Biodiversity and Conservation,2004,13(12):2319-2337.
[10]Farooq S,Azam F. Co-existence of salt and drought tolerance in Triticeae[J]. Hereditas,2001,135(2/3):205-210.
[11]Lmldjeva S,Merakehijska-Nikolova M,Ganeva G. Copper toxicity tolerance in Aegilops and Haynaldia seedings[J]. Biologia Plantrum,2003,46(3):479-480.
[12]颜济,杨俊良. 小麦簇生物系统学:小麦-山羊草复合群[M]. 北京:中国农业出版社,1999:165-166.
[13]李立会,李秀全. 小麦种质资源描述规程和数据标准[M]. 北京:中国农业出版社,2006:59-60.
[14]Liu Z Y,Sun Q X,Ni Z F,et al. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer[J]. Euphytica,2002,123:21-29.
[15]Bao Y,Li X,Liu S,et al. Molecular cytogenetic characterization of a new wheat-Thinopyrum intermedium partial amphiploid resistant to powdery mildew and stripe rust[J]. Cytogenetic and Genome Research,2009,126(4):390-395.
[16]赵和. 小麦矮秆基因研究和利用现状[J]. 河北农业科学,2004,8(4):96-99.
[17]康苏花,兰素缺,李杏普,等. 小麦矮秆基因的研究进展[J]. 河北师范大学学报:自然科学版,2010,34(1):93-97.
[18]Huang X Q,Rder M S. Molecular mapping of powdery mildew resistance genes in wheat:a review[J]. Euphytica,2004,137:203-223.
[19]郝元峰.小麦抗白粉病基因的分子标记定位及标记辅助选择[D]. 泰安:山东农业大学,2008:48-51.
[20]Luo P G,Luo H Y,Chang Z J,et al. Characterization and chromosomal location of Pm40 in common wheat:a new gene for resistance to powdery mildew derived from Elytrigia intermedium[J]. Theoretical and Applied Genetics,2009,118(6):1059-1064.
[21]Li G Q,Fang T L,Zhang H T,et al. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer(Triticum turgidum var. dicoccoides)[J]. Theoretical and Applied Genetics,2009,119(3):531-539.
[22]Hua W,Liu Z J,Zhu J,et al. Identification and genetic mapping of Pm42,a new recessive wheat powdery mildew resistance gene derived from wild emmer(Triticum turgidum var. dicoccoides)[J]. Theoretical and Applied Genetics,2009,119(2):223-230.
[23]He R L,Chang Z J,Yang Z J,et al. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat[J]. Theoretical and Applied Genetics,2009,118(6):1173-1180.
[24]Ma H Q,Kong Z X,Fu B S,et al. Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat[J]. Theoretical and Applied Genetics,2011,123(7):1099-1106.
[1]何震天,张容,王建华,等.小麦扬辐麦4号高产表现及配套栽培技术[J].江苏农业科学,2013,41(04):69.
[2]缪建国,于莎,李锦霞,等.小麦扬辐麦4号特征特性及超高产栽培技术[J].江苏农业科学,2013,41(04):75.
[3]孙苏阳,李海军,王永军,等.高产广适多抗小麦主推品种淮麦25的特征特性及
高产栽培技术[J].江苏农业科学,2013,41(04):93.
[4]孙苏阳,李海军,王永军,等.高产小麦新品种淮麦32的选育及栽培技术[J].江苏农业科学,2013,41(05):83.
Sun Suyang,et al.Breeding and cultivation techniques of a new wheat cultivar “Huaimai No.32”[J].Jiangsu Agricultural Sciences,2013,41(06):83.
[5]钱宏兵,朱德进,于倩倩.氮素营养水平对中筋小麦扬麦16产量和氮素吸收的影响[J].江苏农业科学,2013,41(06):71.
Qian Hongbing,et al.Effects of nitrogen nutrition levels on yield and nitrogen uptake of medium gluten wheat cultivar “Yangmai 16”[J].Jiangsu Agricultural Sciences,2013,41(06):71.
[6]吕艳伟,何文慧,陈雨鸥,等.盐胁迫对小麦幼苗光合色素含量和细胞膜的影响[J].江苏农业科学,2013,41(06):74.
Lü Yanwei,et al.Effects of salt stress on photosynthetic chlorophyll content and cell membrane in wheat[J].Jiangsu Agricultural Sciences,2013,41(06):74.
[7]朱桂清,宋晶晶,曹远银,等.2009—2010年东北春麦区小麦白粉病菌生理小种动态分析[J].江苏农业科学,2013,41(06):99.
Zhu Guiqing,et al.Physiological race dynamics analysis of Blumeria graminis in northeastern spring wheat region of China during 2009 to 2010[J].Jiangsu Agricultural Sciences,2013,41(06):99.
[8]陈志龙,陈杰,许建平,等.有机肥氮替代部分化肥氮对小麦产量及氮肥利用率的影响[J].江苏农业科学,2013,41(07):55.
Cheng Zhilong,et al.Effects of organic fertilizer nitrogen replacing part of chemical fertilizer nitrogen on yield and nitrogen utilization ratio of wheat[J].Jiangsu Agricultural Sciences,2013,41(06):55.
[9]姚战军,张永刚.水氮运筹对小麦光合作用及产量的影响[J].江苏农业科学,2013,41(07):58.
Yao Zhanjun,et al.Effect of water and nitrogen management on photosynthesis and yield of wheat[J].Jiangsu Agricultural Sciences,2013,41(06):58.
[10]龚宏伟,马翎健.2类小麦雄性不育系育性敏感时期谷胱甘肽过氧化物酶活性及丙二醛含量变化[J].江苏农业科学,2013,41(07):60.
Gong Hongwei,et al.Changes of GSH-Px activity and MDA content in fertility sensitive period of two different types of wheat male sterile lines[J].Jiangsu Agricultural Sciences,2013,41(06):60.