|本期目录/Table of Contents|

[1]王丹碧,赫佳,张云燕,等.植物种群小尺度空间遗传结构研究进展[J].江苏农业科学,2017,45(10):4-8.
 Wang Danbi,et al.Research progress on small-scale spatial genetic structure of plant population[J].Jiangsu Agricultural Sciences,2017,45(10):4-8.
点击复制

植物种群小尺度空间遗传结构研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年10期
页码:
4-8
栏目:
专论与综述
出版日期:
2017-05-20

文章信息/Info

Title:
Research progress on small-scale spatial genetic structure of plant population
作者:
王丹碧 赫佳 张云燕 施恩 耿其芳 王中生
南京大学生命科学学院,江苏南京 210000
Author(s):
Wang Danbiet al
关键词:
植物种群小尺度空间遗传结构基因流生境破碎化物种保育种群生活史
Keywords:
-
分类号:
Q948.1
DOI:
-
文献标志码:
A
摘要:
植物种群小尺度空间遗传结构(SGS)一般是指种群内个体基因型在空间上的非随机分布,基因流受限是空间遗传结构形成的最主要原因。种群小尺度空间遗传结构研究可以直接量化描述种群内个体间的亲缘关系、辨识种群内亲缘个体的聚集分布特征、定位不同的基因型单元(基因斑块),并可进一步揭示种群内已发生的花粉、种子散布特征,以及种群间的基因交流模式,判别花粉流与种子流可能的限制因子,并可及时预警种群生境破碎化的遗传效应,有助于理解种群生存力、适应潜力以及种群未来自然选择的方向,为自然种群管理及其遗传资源保护策略的制定提供直接的数据参考与理论分析依据。本文在总结近年来植物种群小尺度空间遗传结构研究相关文献的基础上,从基因流、人为干扰、历史事件以及微生境选择作用等方面对种群小尺度空间遗传结构的影响因素进行了综述,并对小尺度空间遗传结构的研究意义进行了初步探讨。
Abstract:
-

参考文献/References:

[1]Epperson B K. Spatial distributions of genotypes under isolation by distance[J]. Genetics,1995,140(1):1431-1440.
[2]朱蕾,康明. 板栗和锥栗同域居群的空间遗传结构[J]. 热带亚热带植物学报,2012,20(1):1-7.
[3]阮咏梅,张金菊,姚小洪,等. 黄梅秤锤树孤立居群的遗传多样性及其小尺度空间遗传结构[J]. 生物多样性,2012,20(4):460-469.
[4]Kalisz S,Nason J D,Hanzawa F M,et al. Spatial population genetic structure in Trillium grandiflorum:the roles of dispersal,mating,history,and selection[J]. Evolution,2001,55(8):1560-1568.
[5]Vekemans X,Hardy O J. New insights from fine-scale spatial genetic structure analyses in plant populations[J]. Molecular Ecology,2004,13(4):921-935.
[6]Rossum F V,Triest L. Fine-scale genetic structure of the common Primula elatior (Primulaceae) at an early stage of population fragmentation[J]. American Journal of Botany,2006,93(9):1281-1288.
[7]Hardy O J,Maggia L,Bandou E,et al. Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species[J]. Molecular Ecology,2006,15(2):559-571.
[8]Ngk K S,Lee S L,Koh C L,et al. Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems and different ploidy levels[J]. Molecular Ecology,2004,13(3):657-669.
[9]Pandey M,Gailing O,Hattemer H H,et al. Fine-scale spatial genetic structure of sycamore maple(Acer pseudoplatanus L.)[J]. European Journal of Forest Research,2012,131(3):739-746.
[10]Wang R,Compton SG,Chen XY,et al. Fragmentation can increase spatial genetic structure without decreasing pollen-mediated gene flow in a wind-pollinated tree[J]. Molecular Ecology,2011,20(21):4421-4432.
[11]Heuertz M,Vekemans X,Hausman J F,et al. Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash[J]. Molecular Ecology,2003,12(9):2483-2495.
[12]Streiff R,Labbe T,Bacilieri R,et al. Within-population genetic structure in Quercus robur L. & Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites[J]. Molecular Ecology,1998,7(3):317-328.
[13]Ueno S,Tomaru N,Yoshimaru H,et al. Genetic structure of Camellia japonica L. in an old-growth evergreen forest,Tsushima,Japan[J]. Molecular Ecology,2000,9(6):647-656.
[14]Parker C K,Hamrick J L,Parker A J,et al. Fine-scale genetic structure in Pinus clausa (Pinaceae) populations:effects of disturbance history[J]. Heredity,2001,87(1):99-113.
[15]Dick C W,Hardy O J,Jones F A,et al. Spatial scales of pollen and seed-mediated gene flow in tropical rain forest trees[J]. Tropical Plant Biology,2008,1(1):20-33.
[16]Cascante-Marín A,Oostermeijer G,Wolf J,et al. Genetic diversity and spatial genetic structure of an epiphytic bromeliad in cost a rican montane secondary forest patches[J]. Biotropica,2014,46(4):425-432.
[17]Cyril D,Sork V L,Irwin A J,et al. Gene flow and fine-scale genetic structure inawind-pollinated tree species,Quercus lobata (Fagaceaee) [J]. American Journal of Botany,2005,92(2):252-261.
[18]Silva C R S,Albuquerque P S B,Ervedosa F R,et al. Understanding the genetic diversity,spatial genetic structure and mating system at the hierarchical levels of fruits and individuals of a continuous Theobroma cacao population from the Brazilian Amazon[J]. Heredity,2011,106(6):973-985.
[19]Diade-Bourobou N,Hardy O J,Favreau B,et al. Long-distance seed and pollen dispersal inferred from spatial genetic structure in the very low-density rainforest tree,Baillonella toxisperma Pierre,in Central Africa[J]. Molecular Ecology,2010,19(22):4949-4962.
[20]左威,宋文静,金则新,等. 活血丹小尺度空间遗传结构研究[J]. 生态学报,2015,35(17):1-10.
[21]Lee S L. Mating system parameters of Dryobalanops aromatica Gaertn.f.(Dipterocarpaceae) in three different forest types and seed orchard[J]. Heredity,2000,85(4):338-345.
[22]Cloutier D,Kanashiro M,Ciampi A Y,et al. Impact of selective logging on inbreeding and gene dispersal in an Amazonian tree population of Carapa guianensis Aubl[J]. Molecular Ecology,2007,16(4):797-809.
[23]杨爱红,张金菊,田华,等. 鹅掌楸贵州烂木山居群的微卫星遗传多样性及空间遗传结构[J]. 生物多样性,2014,22(3):375-384.
[24]Moreira P A,Fernandes G W,Collevatti R G. Fragmentation and spatial genetic structure in Tabeluia ochracea (Bignoniaceae) a seasonally dry Neotropical tree[J]. Forest Ecology and Management,2009,258(12):2690-2695.
[25]Rathmacher G,Niggemann M,Khnen M,et al. Short-distance gene flow in Populus nigra L. accounts for small-scale spatial genetic structures:implications for in situ conservation measures[J]. Conservation Genetics,2010,11(4):1327-1338.
[26]Wang R,Compton S G,Shi Y S,et al. Fragmentation reduces regional-scale spatial genetic structure in a wind-pollinated tree because genetic barriers are removed[J]. Ecology and Evolution,2012,2(9):2250-2261.
[27]Sebbenn A M,Carvalho A C M,Freitas M L M,et al. Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small,isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf[J]. Heredity,2010,106(1):134-145.
[28]Slavov G T,Leonardi S,Adams W T,et al. Population substructure in continuous and fragmented stands of Populus trichocarpa[J]. Heredity,2010,105(4):348-357.
[29]Trapnell D W,Hamrick J L,Ishibashi C D,et al. Genetic inference of epiphytic orchid colonization;it may only take one[J]. Molecular Ecology,2013,22(14):3680-3692.
[30]Bizoux J P,Danou K,Bourland N,et al. Spatial genetic structure in Milicia excelsa (Moraceae) indicates extensive gene dispersal in a low-density wind-pollinated tropical tree[J]. Molecular Ecology,2009,18(21):4398-4408.
[31]Troupin D,Nathan R,Vendramin G G,et al. Analysis of spatial genetic structure in an expanding Pinus halepensis population reveals development of fine-scale genetic clustering over time[J]. Molecular Ecology,2006,15(12):3617-3630.
[32]Jones F A,Hamrick J L,Peterson C J,et al. Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra[J]. Molecular Ecology,2006,15(15):851-861.
[33]王峥峰,彭少麟,任海. 小种群的遗传变异和近交衰退[J]. 植物遗传资源学报,2005,6(1):101-107.
[34]Reed D H,Briscoe D A,Frankham R. Inbreeding and extinction:the effect of environmental stress and lineage[J]. Conservation Genetics,2002,3(3):301-307.
[35]李昂,葛颂. 植物保护遗传学研究进展[J]. 生物多样性,2002,10(1):61-71.
[36]王峥峰,葛学军. 不仅仅是遗传多样性:植物保护遗传学进展[J]. 生物多样性,2009,17(4):330-339.
[37]Born C,Hardy O J,Chevallier M H,et al. Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana:a stepwise approach to infer the impact of limited gene dispersal,population history and habitat fragmentation[J]. Molecular Ecology,2008,17(8):2041-2050.
[38]Jacquemyn H,Brys R,Vandepitte K,et al. Fine-scale genetic structure of life history stages in the food-deceptive orchid Orchis purpurea[J]. Molecular Ecology,2006,15(10):2801-2808.
[39]Stacy E A. Cross-fertility in two tropical tree species:evidence of inbreeding depression within populations and genetic divergence among populations[J]. American Journal of Botany,2001,88(6):1041-1051.
[40]Hirao A S. Kinship between parents reduces offspring fitness in a natural population of Rhododendron brachycarpum[J]. Annals of Botany,2010,105(4):637-646.
[41]Lowe A J,Boshier D,Ward M,et al. Genetic resource impacts of habitat loss and degradation;reconciling empirical evidence and predicted theory for neotropical trees[J]. Heredity,2005,95(4):255-273.
[42]de Lucas A I,González-Martínez S C,Vendramin G G,et al. Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton[J]. Molecular Ecology,2009,18(18):4564-4576.
[43]Leite F A B,Brando R L,Lemos-Filho J P D,et al. Fine-scale genetic structure of the threatened rosewood Dalbergia nigra from the Atlantic Forest:comparing saplings versus adults and small fragment versus continuous forest[J]. Tree Genetics & Genomes,2014,10(2):307-316.
[44]Marquardt P E,Epperson B K. Spatial and population genetic structure of microsatellites in white pine[J]. Molecular Ecology,2004,13(11):3305-3315.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-01-27
基金项目:国家自然科学基金(编号:31100270)。
作者简介:王丹碧(1992—),女,贵州黔南人,硕士研究生,研究方向为分子生态学。E-mail:wdbnju@126.com。
通信作者:王中生,博士,副教授,主要从事保护与恢复生态学研究。E-mail:wangzs@nju.edu.cn。
更新日期/Last Update: 2017-05-20