[1]玉光惠,方宣钧. 表型组学的概念及植物表型组学的发展[J]. 分子植物育种,2009,7(4):639-645.
[2]潘映红. 论植物表型组和植物表型组学的概念与范畴[J]. 作物学报,2015,41(2):175-186.
[3]Baker M. Big biology:the omes puzzle[J]. Nature,2013,494(7438):416-419.
[4]Zhe L U,Zhang F,Qin M A,et al. Advances in crop phenotyping and multi-environment trials[J]. Frontiers of Agricultural Science and Engineering,2015,2(1):28-37.
[5] Meier U,Bleiholder H. The BBCH scale - codification and description of phonological growth stages of plants and their international use in agricultural research[C]. Proceedings of the International Symposium,2007:8-10.
[6]Lottner O,Sluiter A,Hartmann K,et al. Movement artefacts in range images of time-of-flight cameras[C]. ISSCS 2007:International Symposium On Signals,Circuits And Systems,Vol 1,2007:117.
[7]Klose R,Penlington J,Ruckelshausen A. Usability study of 3D time-of-flight cameras for automatic plant phenotyping[J]. Bornimer Agrartechnische Berichte,2009,69:93-105.
[8]张存政,单炜力,龚勇,等. BBCH编码系统及其在我国农药管理体系中的应用[J]. 农产品质量与安全,2011(6):48-50.
[9]沈凤悦,李毅念,陈信信,等. 高时空分辨率及高通量的稻茬麦苗期表型指标动态特征研究[J]. 作物杂志,2014(5):117-121.
[10]周金辉,马钦,朱德海,等. 基于机器视觉的玉米果穗产量组分性状测量方法[J]. 农业工程学报,2015,31(3):221-227.
[11]Aharoni A,Vorst O. DNA microarrays for functional plant genomics[J]. Plant Molecular Biology,2002,48(1/2):99-118.
[12]CropDesign. Traitmill- platform and process[EB/OL].[2015-12-12].http://www.cropdesign.com/tech_traitmill.php.
[13]李长缨,滕光辉,赵春江,等. 利用计算机视觉技术实现对温室植物生长的无损监测[J]. 农业工程学报,2003,19(3):140-143.
[14]吴琼,朱大洲,王成,等. 农作物苗期长势无损监测技术研究进展[J]. 农业工程,2011,1(4):19-25.
[15]林开颜,徐立鸿,吴军辉. 计算机视觉技术在作物生长监测中的研究进展[J]. 农业工程学报,2004,20(2):279-283.
[16]康乐,王海洋. 我国生物技术育种现状与发展趋势[J]. 中国农业科技导报,2014,16(1):16-23.
[17]吴建伟,卢大文,明博,等. 我国种业智能装备产业研究[J]. 中国农业科技导报,2014,16(6):68-73.
[18]丁海凤,于拴仓,王德欣,等. 中国蔬菜种业创新趋势分析[J]. 中国蔬菜,2015(8):1-7.
[19]Berger B,de Regt B,Tester M. High-throughput phenotyping of plant shoots[J]. Methods Mol Biol,2012,918:9-20.
[20]Klukas C,Pape J M,Entzian A. Analysis of high-throughput plant image data with the information system IAP[J]. Journal of Integrative Bioinformatics,2012,9(2):191-193.
[21]Neumann K. Using automated high-throughput phenotyping using the LemnaTec Imaging Platform to visualize and quantify stress influence in Barley[C]//Plant and Animal Genome XXI Conference. Plant and Animal Genome,2013.
[22]Furbank R T,Tester M. Phenomics-technologies to relieve the phenotyping bottleneck[J]. Trends in Plant Science,2011,16(12):635-644.
[23]Langridge P. High-throuput phenotyping of nitrogen response and use in wheat with lemnatec scanalyzer 3D[C]//Plant and Animal Genome ⅩⅩⅡ Conference. Plant and Animal Genome,2014.
[24]Helmert M,Lasinger H. The scanalyzer domain:greenhouse logistics as a planning problem[C]. ICAPS,2010:234-237.
[25]Pereyra-Irujo G A,Gasco E D,Peirone L S,et al. GlyPh:a low-cost platform for phenotyping plant growth and water use[J]. Functional Plant Biology,2012,39(11):905-913.
[26]Naumann B,Eberius M,Appenroth K J. Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St[J]. Journal of Plant Physiology,2007,164(12):1656-1664.
[27]燕辉,胡笑涛,姚付启. 限量灌溉对冬小麦光合与叶绿素荧光的影响[J]. 农业机械学报,2011,42(11):49-54.
[28]赵友全,魏红艳,李丹,等. 叶绿素荧光检测技术及仪器的研究[J]. 仪器仪表学报,2010,31(6):1342-1346.
[29]王春萍,雷开荣,李正国,等. 低温胁迫对水稻幼苗不同叶龄叶片叶绿素荧光特性的影响[J]. 植物资源与环境学报,2012,21(3):38-43.
[30]程建峰,陈根云,沈允钢. 神农架林区不同类型植物的叶片特征与光合性能研究[J]. 生态环境学报,2010,19(1):165-171.
[31]Zhang Y J,Liu L Y,Hou M Y,et al. Progress in remote sensing of vegetation chlorophyll fluorescence[J]. J Remote Sens,2009,13:971-978.
[32]Finkel E. With ‘phenomics’,plant scientists hope to shift breeding into overdrive[J]. Science,2009,325(5939):380-381.
[33]李宏,韦晓兰. 表型组学:解析基因型-表型关系的科学[J]. 生物技术通报,2013(7):41-47.
[34]朱会义,刘高焕. 印度农业研究系统发展的现状、问题与对策[J]. 中国农业科技导报,2002,4(2):38-42.
[35]李树君,方宪法,南国良,等. 数字农业工程技术体系及其发展[J]. 农业机械学报,2003,34(5):157-160.
[36]应义斌,傅宾忠,蒋亦元,等. 机器视觉技术在农业生产自动化中的应用[J]. 农业工程学报,1999,15(3):199-203.
[37]刘燕德,应义斌,成芳. 机器视觉技术在种子纯度检验中的应用[J]. 农业机械学报,2003,34(5):161-163.
[38]Andrade-Sanchez P,Gore M A,Heun J T,et al. Development and evaluation of a field-based high-throughput phenotyping platform[J]. Functional Plant Biology,2014,41(1):68-79.
[39]Yang W,Duan L,Chen G,et al. Plant phenomics and high-throughput phenotyping:accelerating rice functional genomics using multidisciplinary technologies[J]. Current Opinion in Plant Biology,2013,16(2):180-187.
[40]Australian plant phenomics facility[EB/OL].[2015-10-10]. http://www.plantphenomics.org.au.
[41]Sozzani R,Busch W,Spalding E P,et al. Advanced imaging techniques for the study of plant growth and development[J]. Trends in Plant Science,2014,19(5):304-310.
[42]Paproki A,Sirault X,Berry S,et al. A novel mesh processing based technique for 3D plant analysis[J]. BMC Plant Biology,2012,12(1):63-75.
[43]Paulus S,Behmann J,Mahlein A K,et al. Low-cost 3D systems:suitable tools for plant phenotyping[J]. Sensors,2014,14(2):3001-3018.
[44]Li L,Zhang Q,Huang D. A review of imaging techniques for plant phenotyping[J]. Sensors,2014,14(11):20078-20111.
[45]Golzarian M R,Frick R A,Karthika R,et al. Accurate inference of shoot biomass from high-throughput images of cereal plants[J]. Plant Methods,2011,7(1):2-12.
[46]Dias P M,Brunel-Muguet S,Duerr C,et al. QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula[J]. Theoretical and Applied Genetics,2011,122(2):429-444.
[47]Grift T E,Novais J,Bohn M. High-throughput phenotyping technology for maize roots[J]. Biosyst Eng,2011,110(1),40-48.
[48]Hoyos-Villegas V,Houx J,Singh S,et al. Ground-based digital imaging as a tool to assess soybean growth and yield[J],Crop Sci,2014,54(4):1756.
[49]Baker N R. Chlorophyll fluorescence:a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology,2008,59(1):89-113.
[50]Chaerle L,Hagenbeek D,de Bruyne E,et al. Chlorophyll fluorescence imaging for disease-resistance screening of sugar beet[J]. Plant Cell Tissue and Organ Culture,2007,91(2):97-106.
[51]Mishra K B,Iannacone R,Petrozza A,et al. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission[J]. Plant Science,2012,182(1):79-86.
[52]Lootens P,Devacht S,Baert J,et al. Evaluation of cold stress of young industrial chicory (Cichorium intybus L.) by chlorophyll a fluorescence imaging. II. Dark relaxation kinetics[J]. Photosynthetica,2011,49(2):185-194.
[53]Araus J L,Serret M D,Edmeades G O. Phenotyping maize for adaptation to drought[J]. Front Physiol,2012(3):305-324.
[54]Jones H G,Serraj R,Loveys B R,et al. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field[J]. Funct Plant Biol,2009,36(10/11):978-989.
[55]Sakamoto T,Shibayama M,Kimura A,et al. Assessment of digital camera-derived vegetation indices in quantitative monitoring of seasonal rice growth[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(6):872-882.
[56]Bolon Y T,Haun W J,Xu W W,et al. Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean[J]. Plant Physiol,2011,156(1):240-253.
[57]Cook J P,McMullen M D,Holland J B,et al. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels[J]. Plant Physiol,2012,158(2):824-834.
[58]Huang J,Liao H,Zhu Y,et al. Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis)[J]. Comput Electr Agric,2012,82(1),100-107.
[59]Matsuda O,Tanaka A,Fujita T,et al. Hyperspectral imaging techniques for rapid identification of Arabidopsis mutants with altered leaf pigment status[J]. Plant & Cell Physiology,2012,53(6):1154-1170.
[60]Biskup B,Scharr H,Schurr U,et al. A stereo imaging system for measuring structural parameters of plant canopies[J]. Plant,Cell & Environment,2007,30(10):1299-1308.
[61]Klose R,Penlington J,Ruckelshausen A. Usability study of 3D time-of-flight cameras for automatic plant phenotyping[J]. Bornimer Agrartech Ber,2009,69:93-105.
[62]Van Der Heijden G,Song Y,Horgan G,et al. SPICY:towards automated phenotyping of large pepper plants in the greenhouse[J]. Functional Plant Biology,2012,39(10/11):870-877.
[63]Reis J R. Evaluation of phenotyping methods for maize[D]. Urbana:Untversity of Illinois,2013.
[64]Paulus S,Dupuis J,Riedel S,et al. Automated analysis of barley organs using 3D laser scanning:an approach for high throughput phenotyping[J]. Sensors,2014,14(7):12670-12686.
[65]Fang S Q,Yan X L,Liao H. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research[J]. Plant Journal for Cell and Molecular Biology,2009,60(6):1096-1108.
[66]Poorter H,Bühler J,van Dusschoten D,et al. Pot size matters:A meta-analysis of the effects of rooting volume on plant growth[J]. Funct Plant Biol,2012,39(10/11),839-850.
[67]Rascher U,Blossfeld S,Fiorani F,et al. Non-invasive approaches for phenotyping of enhanced performance traits in bean[J]. Functional Plant Biology,2011,38(12):968-983.
[68]Yang W N,Xu X C,Duan L F,et al. High-throughput measurement of rice tillers using a conveyor equipped with X-ray computed tomography[J]. The Review of Scientific Instruments,2011,82(2):025102.
[69]Flavel R J,Guppy C N,Tighe M,et al. Non-destructive quantification of cereal Roots in soil using high-resolution X-ray tomography[J]. Journal of Experimental Botany,2012,63(7):2503-2511.
[70]Karunakaran C,Jayas D,White N. Detection of internal wheat seed infestation by Rhyzopertha dominica using X-ray imaging[J]. J Stored Prod Res,2004,40(5):507-516.
[71]胡鹏程,郭焱,李保国,等. 基于多视角立体视觉的植株三维重建与精度评估[J]. 农业工程学报,2015,31(11):209-214.
[72]杨福增,王峥,韩文霆,等. 基于小波变换的红枣裂沟的多尺度边缘检测[J]. 农业工程学报,2005,21(6):92-95.
[73]张馨,李道亮,杨文柱,等. 高分辨率棉花异性纤维彩色图像的快速分割方法[J]. 农业机械学报,2011,42(1):159-164,192.
[74]刘镕源,王纪华,杨贵军,等. 冬小麦叶面积指数地面测量方法的比较[J]. 农业工程学报,2011,27(3):220-224.
[75]陈鼎才,王定成,查金水. 基于机器视觉的现实叶片面积测量方法的研究[J]. 计算机应用,2006,26(5):1226-1228.
[76]蔡健荣,周小军,李玉良,等. 基于机器视觉自然场景下成熟柑橘识别[J]. 农业工程学报,2008,24(1):175-178.
[77]喻擎苍,严红滨. 一种基于图像轮廓线的稻种模糊模式识别方法[J]. 农业工程学报,2002,18(1):150-153.
[78]刁智华,王欢,宋寅卯,等. 复杂背景下棉花病叶害螨图像分割方法[J]. 农业工程学报,2013,29(5):147-152.
[79]周俊,王明军,邵乔林. 农田图像绿色植物自适应分割方法[J]. 农业工程学报,2013,29(18):163-170.
[80]贾伟宽,赵德安,阮承治,等. 苹果夜视图像小波变换与独立成分分析融合降噪方法[J]. 农业机械学报,2015,46(9):9-17.
[81]杨福增,张艳宁,王峥,等. 基于小波变换的Wiener滤波算法去除苹果图像噪声[J]. 农业机械学报,2006,37(12):130-133,143.
[1]闫丽,沈明霞,刘龙申,等.猪行为自动监测技术研究现状与展望[J].江苏农业科学,2016,44(02):22.
Yan Li,et al.Current status and prospect of swine behavior automatic monitoring technology[J].Jiangsu Agricultural Sciences,2016,44(11):22.
[2]胡玲艳,许巍,秦山,等.基于分时重叠算法的欧洲甜樱桃表型关键特征区域图像分割方法[J].江苏农业科学,2023,51(1):195.
Hu Lingyan??et al.Image segmentation of key feature regions of European sweet cherry phenotype based on time-sharing overlap algorithm[J].Jiangsu Agricultural Sciences,2023,51(11):195.