[1]Christakos G. Modern spatiotemporal geostatistics[M]. New York:Oxford University Press,2000. [2]Christakos G. A bayesian/maximum-entropy view to the spatial estimation problem[J]. Mathematical Geology,1990,22(7):763-777. [3]Christakos G. Some applications of the bayesian,maximum-entropy concept in geostatistics[M]//Maximum entropy and Bayesian methods. Berlin:Springer Netherlands,1991:215-229. [4]Christakos G. Random field models in earth sciences[M]. San Diego:Academic Press,1992. [5]Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal,1948,27(3):379-423. [6]Ewing G M. Calculus of variations with applications[M]. New York:W. W. Norton Company,1969,62-65. [7]Lee S J. Models of soft data in geostatistics and their application in environmental and health mapping[D]. North Carolina:University of North Carolina at Chapel Hill,2005. [8]Douaik A,van Meirvenne M,Tóth T,et al. Space-time mapping of soil salinity using probabilistic bayesian maximum entropy[J]. Stochastic Environmental Research and Risk Assessment,2004,18(4):219-227. [9]Douaik A,van Meirvenne M,Tóth T. Soil salinity mapping using spatio-temporal kriging and bayesian maximum entropy with interval soft data[J]. Geoderma,2005,128(3):234-248. [10]DOr D. Spatial prediction of soil properties,the bayesian maximum entropy approach[D]. Louvain-la-Neuve:Université Catholique De Louvain,2003. [11]Gao S G,Zhu Z L,Liu S M,et al. Estimating the spatial distribution of soil moisture based on bayesian maximum entropy method with auxiliary data from remote sensing [J]. International Journal of Applied Earth Observation and Geoinformation,2014,32(10):54-66. [12]Christakos G,Serre M L. BME analysis of spatiotemporal particulate matter distributions in North Carolina[J]. Atmospheric Environment,2000,34(20):3393-3406. [13]Christakos G,Serre M L,Kovitz J L. BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements[J]. Journal of Geophysical Research:Atmospheres,2001,106(D9):9717-9731. [14]Yu H L,Chen J C,Christakos G,et al. BME estimation of residential exposure to ambient PM10 and ozone at multiple time scales[J]. Environmental Health Perspectives,2009,117(4):537-544. [15]Akita Y,Chen J C,Serre M L. The moving-window Bayesian maximum entropy framework:estimation of PM2.5 yearly average concentration across the contiguous United States[J]. Journal of Exposure Science and Environmental Epidemiology,2012,22(5):496-501. [16]Christakos G,Kolovos A,Serre M L,et al. Total ozone mapping by integrating databases from remote sensing instruments and empirical models[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(5):991-1008. [17]Bogaert P,Christakos G,Jerrett M,et al. Spatiotemporal modelling of ozone distribution in the State of California[J]. Atmospheric Environment,2009,43(15):2471-2480. [18]Nazelle A,Arunachalam S,Serre M L. Bayesian maximum entropy integration of ozone observations and model predictions:an application for attainment demonstration in North Carolina[J]. Environmental Science and Technology,2010,44(15):5707-5713. [19]Adam-Poupart A,Brand A,Fournier M,et al. Spatiotemporal modeling of ozone levels in Quebec (Canada):a comparison of kriging,land-use regression (LUR),and combined bayesian maximum entropy-LUR approaches[J]. Environmental Health Perspectives,2014,122(9):970-976. [20]Lee S J,Balling R,Gober P. Bayesian maximum entropy mapping and the soft data problem in urban climate research[J]. Annals of the Association of American Geographers,2008,98(2):309-322. [21]Li A,Bo Y C,Zhu Y X,et al. Blending multi-resolution satellite sea surface temperature (SST) products using bayesian maximum entropy method[J]. Remote Sensing of Environment,2013,135:52-63. [22]Tang S L,Yang X F,Dong D,et al. Merging daily sea surface temperature data from multiple satellites using a bayesian maximum entropy method[J]. Frontiers of Earth Science,2015,9(4):722-731. [23]Lee S J,Wentz E A. Applying bayesian maximum entropy to extrapolating local-scale water consumption in Maricopa County,Arizona[J]. Water Resources Research,2008,44(1):1-13. [24]李明阳,张晓利,刘方,等. 基于贝叶斯最大熵模型的紫金山松材线虫危害程度时空分析[J]. 西北农林科技大学学报(自然科学版),2012,40(7):99-105. [25]Bogaert P,Fasbender D. Bayesian data fusion in a spatial prediction context:a general formulation[J]. Stochastic Environmental Research and Risk Assessment,2007,21(6):695-709. [26]Fasbender D,Peeters L,Bogaert P,et al. Bayesian data fusion applied to water table spatial mapping[J]. Water Resources Research,2008,44(12):1-9.. [27]李爱华. 基于贝叶斯最大熵方法的多源定量遥感产品融合研究[D]. 北京:北京师范大学,2011. [28]弓永利. 基于微波遥感的裸露地表土壤盐分含量的反演[J].江苏农业科学,2015,43(11):442-444. [29]汤斌,王福民,周柳萍,等. 基于地级市的区域水稻遥感估产与空间化研究[J].江苏农业科学,2015,43(11):525-528. [30]高胜国. 融合遥感信息的土壤水分空间估计及升尺度研究[D]. 北京:北京师范大学,2014.
[1]李岩,尚士友,王志国,等.内蒙古乌珠穆沁典型草原栗钙土层厚度空间异质性研究[J].江苏农业科学,2014,42(11):364.
Li Yan,et al().Study on spatial heterogeneity of typical grassland chestnut soil thickness in Ujumuqin,Inner Mongolia[J].Jiangsu Agricultural Sciences,2014,42(18):364.
[2]尹辉,李晖,蒋忠诚,等.典型岩溶区土壤水分的空间异质性研究[J].江苏农业科学,2013,41(07):332.
Yin Hui,et al.Study on spatial variability of soil water content in typical karst area[J].Jiangsu Agricultural Sciences,2013,41(18):332.
[3]李枝桦,伞金辉,陈兴位,等.云南植烟土壤有机质与养分的关系及主要养分的空间变化[J].江苏农业科学,2017,45(12):220.
Li Zhihua,et al.Relationship between soil organic matter and nutrients and spatial changes of main nutrients in Yunnan tobacco-planted soils[J].Jiangsu Agricultural Sciences,2017,45(18):220.
[4]高丽楠,张宏.青藏高原高寒草地土壤铁的空间异质性[J].江苏农业科学,2017,45(15):239.
Gao Linan,et al.Spatial heterogeneity of soil active iron of alpine meadow in Qinghai-Tibet Plateau[J].Jiangsu Agricultural Sciences,2017,45(18):239.
[5]李岩,尚士友,王晓娟,等.西乌珠穆沁典型草原植被盖度空间异质性研究[J].江苏农业科学,2017,45(22):283.
Li Yan,et al.Study on spatial heterogeneity of vegetation coverage of Wuzhumuqin typical steppe[J].Jiangsu Agricultural Sciences,2017,45(18):283.
[6]郭硕,魏明欢,简卿,等.县域耕地质量监测样点布设研究——以河北省昌黎县为例[J].江苏农业科学,2018,46(12):227.
Guo Shuo,et al.Study on layout of sample points of cultivated land quality monitoring at county level—Taking Changli County of Hebei Province as an example[J].Jiangsu Agricultural Sciences,2018,46(18):227.
[7]陈悦,吕光辉,曹靖,等.荒漠土壤水、盐、有机质空间分布及相互关系[J].江苏农业科学,2018,46(12):254.
Chen Yue,et al.Spatial distribution of soil moisture,salinity and organic matter and their correlations in desert area[J].Jiangsu Agricultural Sciences,2018,46(18):254.
[8]赵璐,刘子亭,陈琳,等.聊城市位山灌区耕层土壤磁化率和有机碳的空间变异分析[J].江苏农业科学,2018,46(19):282.
Zhao Lu,et al.Analysis of spatial variability of topsoil magnetic susceptibility and organic carbon in Weishan irrigation area of Liaocheng, Shandong Province[J].Jiangsu Agricultural Sciences,2018,46(18):282.
[9]齐伟恒,彭琳,郜鲁涛,等.基于ArcGIS地统计分析模块的土壤养分与pH值空间变异分析
——以云南省寻甸县为例[J].江苏农业科学,2018,46(23):287.
Qi Weiheng,et al.Study on spatial variability of soil nutrients and pH values based on GIS geostatistical analysis module—Taking Xundian Country of Yunnan Province as an example[J].Jiangsu Agricultural Sciences,2018,46(18):287.
[10]于芳,李海明.基于地统计学和GIS的湖北省土壤有机质空间变异性研究[J].江苏农业科学,2019,47(15):282.
Yu Fang,et al.Study on spatial variability of soil organic matter in Hubei Province based on geostatistics and GIS[J].Jiangsu Agricultural Sciences,2019,47(18):282.