[1]Suarez C,Cardinale M,Ratering S,et al. Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress[J]. Applied Soil Ecology,2015,95:23-30.
[2]Boston R S,Viitanen P V,Vierling E. Molecular chaperones and protein folding in plants[J]. Plant Molecular Biology,1996,32(1/2):191-222.
[3]Wang J,Martin E,Gonzales V,et al. Differential regulation of small heat shock proteins in transgenic mouse models of neurodegenerative diseases[J]. Neurobiol Aqing,2008,29:586-597.
[4]Kubota H,Hynes G,Willison K. The Chaperonin containing t-complex polypeptide-1(TCP-1)[J]. The FEBS Journal,1995,230(1):3-16.
[5]Ranson N A,White H E,Saibil H R. Chaperonins[J]. Biochemical Journal,1998,333:233-242.
[6]Ursic D,Sedbrook J C,Himmel K L,et al. The essential yeast TCP1 protein affects actin and microtubules[J]. Molecular Biology of the Cell,1994,5(10):1065-1080.
[7]Valpuesta J M,Martin-Benito J,Gomez-Puertas P,et al. Structure and function of a protein folding machine:the eukaryotic cytosolic chaperonin CCT[J]. Febs Letters,2002,529(1):11-16.
[8]Yamada A,Sekiguchi M,Mimura T,et al. The role of plant CCT alpha in salt- and osmotic-stress tolerance[J]. Plant and Cell Physiology,2002,43(9):1043-1048.
[9]Baker S S,Wilhelm K S,Thomashow M F. The 5′-region of Arabidopsis-thaliana cor15a has cis-acting elements that confer cold-,drought- and ABA-regulated gene-expression[J]. Plant Molecular Biology,1994,24(5):701-713.
[10]Urao T,Yamaguchishinozaki K,Urao S,et al. An Arabidopsis myb homolog is induced by dehydration stress and its gene-product binds to the conserved MYB recognition sequence[J]. Plant Cell,1993,5(11):1529-1539.
[11]Abe H,Urao T,Ito T,Seki M,et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell,2003,15(1):63-78.
[12]Lopez T,Dalton K,Frydman J. The mechanism and function of group Ⅱ chaperonins[J]. Journal of Molecular Biology,2015,427(18):2919-2930.
[13]Yam A Y,Xia Y,Lin H T J,et al. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies[J]. Nature Structural and Molecular Biology,2008(15):1255-1262.
[14]Liang X H,Shen W,Sun H,et al. TCP1 complex proteins interact with phosphorothioate oligonucleotides and can co-localize in oligonucleotide-induced nuclear bodies in mammalian cells[J]. Nucleic Acids Res,2014,42(12):7819-7832.
[15]Wang S Q,Zhang W J,Yang K L,et al. Isolation and characterization of a novel Dehalobacter species strain TCP1 that reductively dechlorinates 2,4,6-trichlorophenol[J]. Biodegradation,2014,25(2):313-323.
[16]Yaffe M B,Farr G W,Miklos D,et al. TCP1 complex is a molecular chaperone in tubulin biogenesis[J]. Nature,1992,358:245-248.
[17]Vinh D B,Drubin D G. A yeast TCP-1-like protein is required for actin function in vivo[J]. Proc Natl Acad Sci U S A,1994,91(19):9116-9120.
[18]Frydman J,Nimmesgern E,Erdjument-Bromage H,et al. Function in protein folding of TRiC,a cytosolic ring complex containing TCP-1 and structurally related subunits[J]. EMBO J,1992,11(13):4767-4778.
[19]Spiess C,Meyer A S,Reissmann S,et al. Mechanism of the eukaryotic chaperonin:protein folding in the chamber of secrets[J]. Trends in Cell Biology,2004,14(11):598-604.
[20]Llorca O,Martin-Benito J,Grantham J,et al. The ‘sequential allosteric ring’ mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin[J]. EMBO Journal,2001,20(15):3893-4323.
[21]Wang W X,Vinocur B,Shoseyov O,et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends in Plant Science,2004,9(5):244-252.
[22]Ben-Zvi A P,Goloubinoff P. Review:Mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones[J]. Journal of Structural Biology,2001,135(2):84-93.
[23]Somer L,Shmulman O,Dror T,et al. The eukaryote chaperonin CCT is a cold shock protein in Saccharomyces cerevisiae[J]. Cell Stress & Chaperones,2002,7(1):47-54.
[1]何震天,张容,王建华,等.小麦扬辐麦4号高产表现及配套栽培技术[J].江苏农业科学,2013,41(04):69.
[2]缪建国,于莎,李锦霞,等.小麦扬辐麦4号特征特性及超高产栽培技术[J].江苏农业科学,2013,41(04):75.
[3]孙苏阳,李海军,王永军,等.高产广适多抗小麦主推品种淮麦25的特征特性及
高产栽培技术[J].江苏农业科学,2013,41(04):93.
[4]孙苏阳,李海军,王永军,等.高产小麦新品种淮麦32的选育及栽培技术[J].江苏农业科学,2013,41(05):83.
Sun Suyang,et al.Breeding and cultivation techniques of a new wheat cultivar “Huaimai No.32”[J].Jiangsu Agricultural Sciences,2013,41(22):83.
[5]刘亚柏.有机水稻—红花草轮作对有机稻产量及土壤肥力的影响[J].江苏农业科学,2014,42(12):72.
Liu Yabo,et al.Effects of organic rice-clover rotation on yield and soil fertility of organic rice[J].Jiangsu Agricultural Sciences,2014,42(22):72.
[6]杜菲,郑慧,李宏军.以还原糖含量为指标的膨化小麦辅料麦汁糖化工艺优化[J].江苏农业科学,2014,42(11):306.
Du Fei,et al(0).Optimization of saccharification process of puffed wheat wort taking reducing sugar content as indicator[J].Jiangsu Agricultural Sciences,2014,42(22):306.
[7]徐艳,江建敏,国骏,等.黄瓜褐斑病菌菌丝蛋白对小麦种子萌发、生长及抗旱性的影响[J].江苏农业科学,2014,42(11):159.
Xu Yan,et al(9).Effects of cucumber brown spot pathogen mycelium protein on seed germination,growth and drought resistance of wheat[J].Jiangsu Agricultural Sciences,2014,42(22):159.
[8]郑光耀,高丽萍,尹有干,等.冷杉针叶三萜酸在小麦生产上的应用[J].江苏农业科学,2014,42(11):98.
Zheng Guangyao,et al(98).Application of triterpene acids from fir needles in wheat production[J].Jiangsu Agricultural Sciences,2014,42(22):98.
[9]钱宏兵,朱德进,于倩倩.氮素营养水平对中筋小麦扬麦16产量和氮素吸收的影响[J].江苏农业科学,2013,41(06):71.
Qian Hongbing,et al.Effects of nitrogen nutrition levels on yield and nitrogen uptake of medium gluten wheat cultivar “Yangmai 16”[J].Jiangsu Agricultural Sciences,2013,41(22):71.
[10]吕艳伟,何文慧,陈雨鸥,等.盐胁迫对小麦幼苗光合色素含量和细胞膜的影响[J].江苏农业科学,2013,41(06):74.
Lü Yanwei,et al.Effects of salt stress on photosynthetic chlorophyll content and cell membrane in wheat[J].Jiangsu Agricultural Sciences,2013,41(22):74.