[1]许乃政,刘红樱,魏峰. 土壤碳库及其变化研究进展[J]. 江苏农业科学,2011,39(2):1-5.
[2]Janzen H H. Carbon cycling in earth systems—A soil science perspective[J]. Agriculture Ecosystems & Environment,2004,104(3):399-417.
[3]Yang Y H,Chen Y N,Li W H. Soil organic carbon distribution of different vegetation types in the Ili river valley[J]. Acta Geographica Sinica,2010,65(5):605-612.
[4]梁二,蔡典雄,张丁辰,等. 中国陆地土壤有机碳储量估算及其不确定性分析[J]. 中国土壤与肥料,2010(6):75-79.
[5]张春来,黄芬,杨慧,等. 岩溶生态系统中的碳循环特征与碳汇效应[J]. 地球与环境,2013,41(4):378-387.
[6]杨钙仁,童成立,张文菊,等. 陆地碳循环中的微生物分解作用及其影响因素[J]. 土壤通报,2015,36(4):606-611.
[7]袁道先,蒋忠诚. IGCP 379“岩溶作用与碳循环”在中国的研究进展[J]. 水文地质工程地质,2000,27(1):49-51.
[8]余健,房莉,卞正富,等. 土壤碳库构成研究进展[J]. 生态学报,2014,34(17):4829-4838.
[9]王海荣,杨忠芳. 土壤无机碳研究进展[J]. 安徽农业科学,2011,39(35):21735-21739.
[10]杨黎芳,李贵桐. 土壤无机碳研究进展[J]. 土壤通报,2011,42(4):986-990.
[11]Han W,Kemmitt S J,Brookes P C. Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J]. Soil Biology & Biochemistry,2007,39(7):1468-1478.
[12]李阳兵,王世杰,容丽. 关于中国西南石漠化的若干问题[J]. 长江流域资源与环境,2003,12(6):593-598.
[13]刘丛强. 生物地球化学过程与地表物质循环——西南喀斯特土壤-植被系统生源要素循环[M]. 北京:科学出版社,2009.
[14]]万军,蔡运龙,张惠远,等. 贵州省关岭县土地利用/土地覆被变化及土壤侵蚀效应研究[J]. 地理科学,2004,24(5):573-579.
[15]You Y M,Wang J,Huang X M,et al. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover[J]. Ecology & Evolution,2014,4(5):633-647.
[16]Liang C,Balser T C. Microbial production of recalcitrant organic matter in global soils:implications for productivity and climate policy[J]. Nature Reviews Microbiology,2011,9(1):75.
[17]Prescott C E,Grayston S J. Tree species influence on microbial communities in litter and soil:current knowledge and research needs[J]. Forest Ecology & Management,2013,309(4):19-27.
[18]Schmidt M W,Torn M S,Abiven S,et al. Persistence of soil organic matter as an ecosystem property[J]. Nature,2011,478(7367):49-56.
[19]Angel R,Soares M I M,Ungar E D,et al. Biogeography of soil archaea and bacteria along a steep precipitation gradient[J]. Isme Journal,2010,4(4):553-563.
[20]Castro H F,Classen A T,Austin E E,et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied & Environmental Microbiology,2010,76(4):999-1007.
[21]Brockett B F T,Prescott C E,Grayston S J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology & Biochemistry,2012,44(1):9-20.
[22]Spohn M,Chodak M. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils[J]. Soil Biology & Biochemistry,2015,81(9):128-133.
[23]de Deyn G B,Cornelissen J H C,Bardgett R D. Plant functional traits and soil carbon sequestration in contrasting biomes[J]. Ecology Letters,2008,11(5):516-531.
[24]Jassey V E,Chiapusio G,Binet P,et al. Above- and below-ground linkages in Sphagnum peatland:climate warming affects plant-microbial interactions[J]. Global Change Biology,2013,19(3):811-823.
[25]Katsalirou E,Deng S,Nofziger D L,et al. Spatial structure of microbial biomass and activity in prairie soil ecosystems[J]. Journal of Soil Science,2010,46(3):181-189.
[26]Franklin R B,Mills A L. Importance of spatially structured environmental heterogeneity in controlling microbial community sition at small spatial scales in an agricultural field[J]. Soil Biology and Biochemistry,2009,41(9):1833-1840.
[27]Cusac K D F,Silver W L,Torn M S,et al. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests[J]. Ecology,2011,92(3):621-632.
[28]Wardle D A,Jonsson M,Bansal S,et al. Linking vegetation change,carbon sequestration and biodiversity:insights from island ecosystems in a long-term natural experiment[J]. Journal of Ecology,2012,100(1):16-30.
[29]刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报,2012,57(2):95-102.
[30]章程. 不同土地利用下的岩溶作用强度及其碳汇效应[J]. 科学通报,2011,56(26):2174-2180.
[31]何师意,潘根兴,曹建华,等. 表层岩溶生态系统碳循环特征研究[J]. 第四纪研究,2000,20(4):383-390.
[32]袁道先,刘再华,蒋忠诚,等. 碳循环与岩溶地质环境[M]. 北京:科学出版社,2002:36-78.
[33]曹建华,周莉,杨慧,等. 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效研究[J]. 第四纪研究,2011,31(3):431-437.
[34]章程,谢运球,吕勇,等. 不同土地利用方式对岩溶作用的影响——以广西弄拉峰丛洼地岩溶系统为例[J]. 地理学报,2006,24(11):1181-1188.
[35]蒋忠减,袁道先,曹建华,等. 中国岩溶碳汇潜力研究[J]. 地球学报,2012,33(2):129-134.
[36]覃小群,蒙荣国,莫日生. 土地覆盖对岩溶地下河碳汇的影响——以广西打狗河流域为例[J]. 中国岩溶,2011,30(4):372-378.
[37]刘长礼,张云,宋超,等. 施用农肥对岩溶溶蚀作用的影响及其生态环境意义[J]. 中国地质,2009,36(6):1395-1404.
[38]梁福源,宋林华,唐涛,等. 路南石林土壤微生物含量及其对土壤CO2浓度的影响[J]. 中国岩溶,2003,22(1):6-10.
[39]陶娜,张馨月,曾辉,等. 积雪和冻结土壤系统中的微生物碳排放和碳氮循环的季节性特征[J]. 微生物学通报,2013,40(1):146-157.
[40]]陈家瑞,曹建华,李涛,等. 西南典型岩溶区土壤微生物数量研究[J]. 广西师范大学学报(自然科学版),2010,28(4):96-100.
[41]周运超,张平究,潘根兴. 表层岩溶系统中土-气-水界面碳流通的短尺度效应——以贵州茂兰国家喀斯特森林公园的秋季日动态监测为例[J]. 第四纪研究,2002,5(3):258-262.
[42]张捷,李升峰,周游游. 细菌、真菌对喀斯特作用的影响研究及其意义[J]. 中国岩溶,1997,16(4):82-89.
[43]吴雁雯,张金池. 微生物碳酸酐酶在岩溶系统碳循环中的作用与应用研究进展[J]. 生物学杂志,2015,32(3):78-84.
[44]孙新健,罗生军,范晓蕾,等. 产油藻株Scenedesmus sp.胞外碳酸酚酶活性及光合作用活性的研究[J]. 可再生能源,2012,30(11):99-103.
[45]李为,贾丽萍,余龙江,等. 不同种类微生物及其碳酸酚酶对土壤-灰岩系统钙镁锌元素迁移作用的土柱模拟实验研究[J]. 土壤,2007,39(3):453-459.
[46]刘再华,Dreybrodt W. 不同CO2分压条件下的白云岩溶解动力学机理[J]. 中国科学(B辑),2001,31(4):377-384.
[47]Li W,Yu L J,Wu Y,et al. Enhancement of Ca2+ release from limestone by microbial extracellular carbonic anhydrase[J]. Bioresource Technology,2007,98(4):950-953.
[48]Li W,Yu I J,Yuan D,et al. A study of the activity and ecological significance of carbonic anhydrase from soil and its microbes from different karst ecosystems of Southwest China[J]. Plant and Soil,2005,272(1/2):133-141.
[49]Li W,Zhou P P,Jia L P,et al. Limestone dissolution induced by fungal mycelia,acidic materials,and carbonic anhydrase from fungi[J]. Mycopathologia,2009,167(1):37-46.
[50]李强,何媛媛,曹建华,等. 植物碳酸醉酶对岩溶作用的影响及其生态效应[J]. 生态环境学报,2011,20(12):1867-1871.
[51]李忠,孙波,林心雄. 我国东部土壤有机碳的密度及转化的控制因素[J]. 地理科学,2001,21(4):301-307.
[52]闫志为,张志卫. 氯化物对方解石和白云石矿物溶解度的影响[J]. 水文地质工程地质,2009,36(1):113-118.