[1]Salem H M,Eweida E A,Farag A . Heavy metals in drinking water and their environmental impact on human health[C]//ICEHM. Egypt:Cairo University,2000:542-556.
[2]李雯,阎爱华,黄秋娴,等. 尾矿区不同植被恢复模式下高效固氮菌的筛选及Biolog鉴定[J]. 生态学报,2014,34(9):2329-2337.
[3]Adriano D C. Heavy metals release in soils[J]. Soil Science,2002,167(11):771-779.
[4]陈浩,杨达源,金晓斌. 石河子垦区耕地土壤污染问题分析[J]. 干旱区资源与环境,2013,27(2):186-192.
[5]蔡美芳,李开明,谢丹平,等. 我国耕地土壤重金属污染现状与防治对策研究[J]. 环境科学与技术,2014,37(120):223-230.
[6]曾学云,吴群河. 重金属污染土壤植物修复基本机理及其发展方向[J]. 环境污染与防治,2004,8(4):76-81.
[7]林强. 我国的土壤污染现状及其防治对策[J]. 福建水土保持,2004,16(1):25-28.
[8]Jiang N. Hazard highlight of pollution of heavy metals[J]. Enviromental Economy,2011,10:10-14.
[9]张艳,邓扬悟,罗仙平,等. 土壤重金属污染以及微生物修复技术探讨[J]. 有色金属科学与工程,2012,3(1):63-66.
[10]Athar R,Ahmad M. Heavy metal toxicity:effect on plant growth and metal uptake by wheat,and on free living azotobacter[J]. Water Air & Soil Pollution,2002,138(1/2/3/4):165-180.
[11]Ramteke S,Sahu B L,Dahariya N S,et al. Heavy metal contamination of vegetables[J]. Journal of Environmental Protection,2016,7(7):996-1004.
[12]杜鹃. 重金属污染七成重金属源于开采矿[N]. 广州日报,2015-09-18(08).
[13]Gulsen T. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste[J]. International Journal of Minerals,Metallurgy,and Materials,2016,23(1):1-6.
[14]Tordoff G M,Baker A J M,Willis A J. Current approaches to the revegetation and reclamation of metalliferous mine wastes[J]. Chemosphere,2000,41(1):219-228.
[15]Hun-Dorris T. Groundwater problems spring to the surface[J]. Environmental Health Perspectives,2004,112(3):159.
[16]González R C,González-Chávez M C A. Metal accumulation in wild plants surrounding mining wastes[J]. Environmental Pollution,2006,144(1):84-92.
[17]许宝健. 危险的隐患沉寂的金山[N]. 中国环境报,2009-03-06(06).
[18]祝玉学. 关于尾矿库工程中几个问题的讨论[J]. 金属矿山,1998(10):7-10.
[19]Johnson D B. Acidophilic microbial communities:candidates for bioremediation of acidic mine effluents[J]. International Biodeterioration & Biodegradation,1995,35(1/2/3):41-58.
[20]Chen Y,Wang C X,Wang Z J. Residues of source identification of persisitent organic pollutants in farmland soil irrigated by effluents from biological treatment plants[J]. Environ Internat,2005,31(6):778- 783.
[21]丁真真. 中国农田土壤重金属污染与其植物修复研究[J]. 水土保持研究,2007,14(3):19-20.
[22]徐红宁,许嘉林. 我国砷异常区的成因及分布[J]. 土壤,1996,28(2):80-84.
[23]申进玲,陈蕾,李晓蕙,等. 固氮菌及其共生体系修复土壤重金属污染[J]. 中国农村小康科技,2006(6):68-69.
[24]Ahluwalia S S,Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater[J]. Bioresource Technology,2007,98(12):2243-2257.
[25]Hussein H,Farag S,Moawad H. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants[J]. Arab J Biotechnol,2004,7:13-22.
[26]Souza E M,Leda S C,Luciano F H,et al. Use of nitrogen-fixing bacteria to improve agricultural productivity[J]. BMC Proceedings,2014,8(4):23-31.
[27]廖瑞章,金荔枝,申淑玲. 利用固氮菌为指标确定土壤重金属毒性研究[J]. 农业环境保护,1989,8(4):5-9.
[28]滕应,黄昌勇,龙健,等. 铅锌银尾矿污染区土壤微生物区系及主要生理类群研究[J]农业环境科学学报,2003,22(4):408-411.
[29]Guo X J,Huang Q Y,Chen W L. Effect of microorganisms on the mobility of heavy metals in soil environments[J]. China Appl Environ Biol,2001,8(1):105-110.
[30]Nies D H. Efflux-mediated heavy metal resistance in prokaryotes[J]. FEMS Microbiology Reviews,2003,27(2/3):313-339.
[31]Vasundhara G,Jayashree G,Kurup G M. Sequestration of nickel and copper by Azotobacter chroococcum SB1[J]. Bulletin of Environmental Contamination and Toxicology,2004,72(6):1122-1127.
[32]王淑芳,胡连生,纪有海,等. 重金属污染黑土中固氮菌及反硝化菌作用强度的测定[J]. 应用生态学报,1991,2(2):174-177.
[33]El-Enany A E,Issa A A. Cyanobacteria as a biosorbent of heavy metals in sewage water[J]. Environmental Toxicology and Pharmacology,2000,8(2):95-101.
[34]Brookes P C. The use of microbial parameters in monitoring soil pollution by heavy metals[J]. Biology and Fertility of Soils,1995,19(4):269-279.
[35]Obbard J P. Ecotoxicological assessment of heavy metals in sewage sludge amended soils[J]. Applied Geochemistry,2001,16(11):1405-1411.
[36]宣瑛. 镉和乙草胺复合污染对早地土壤自生固氮菌种群和生物活性的影响[D]. 杭州:浙江大学,2006:6-16.
[37]周东美,王慎强,陈怀满. 土壤中有机污染物-重金属复合污染的交互作用[J]. 土壤与环境,2000,9(2):143-145.
[38]贾会娟,祝惠,袁星,等. 克百威与镉单一及复合污染对土壤好气性自生固氮菌数量的影响[J]. 农业环境科学学报,2007,26(10):529-532.
[39]黄铮. 铜单一污染与铜镉复合污染对稻田土攘微生态的影响及抗性菌株的分离与特征研究[D]. 杭州:浙江大学,2006:4-7.
[40]胡佳频,汤鹏,易浪波,等. 钾长石矿区土壤固氮菌的多样性分析[J]. 中国微生态学杂志,2015,27(10):1127-1130.
[41]唐凤灶. 安徽铜陵铜尾矿原生演替过程中的土壤固氮菌研究[D]. 广州:中山大学,2010:2-3.
[42]Vitousek P M,Porder S,Houlton B Z,et al. Terrestrial phosphorus limitation:mechanisms,implications,and nitrogen-phosphorus interactions[J]. Ecological Applications,2010,20(1):5-15.
[43]杨容孑,刘柿良,宋会兴,等. 不同氮形态对龙葵镉积累、抗氧化系统和氮同化的影响[J]. 生态环境学报,2016,25(4):715-723.
[44]Epelde L,Becerril J M,Barrutia O,et al. Interactions between plant and rhizosphere microbial communities in a metalliferous soil[J]. Environmental Pollution,2010,158(5):1576-1583.
[45]Sriprang R,Hayashi M,Yamashita M,et al. A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia[J]. Journal of Biotechnology,2002,99(3):279-293.
[46]李廷强,舒钦红,杨肖娥. 不同程度重金属污染土壤对东南景天根际土壤微生物特征的影响[J]. 浙江大学学报(农业与生命科学版),2008,34(6):692-698.
[47]陈一萍. 重金属超积累植物的研究进展[J]. 环境科学与管理,2008,33(3):20-24.
[48]张学洪,罗亚平,黄海涛,等. 一种新发现的湿生铬超积累植物——李氏禾[J]. 生态学报,2006,3(26):950-953.
[49]祝鹏飞,宁平,曾向东,等. 有色冶炼污染区土壤污染及重金属超积累植物的研究[J]. 安全与环境工程,2006,1(13):48-52.
[50]魏树和,周启星,王新. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学,2005,3(26):167-170.
[51]魏正贵,张惠娟,李辉信,等. 稀土元素超积累植物研究进展[J]. 中国稀土学报,2006,24(1):1-4.
[52]吴双桃,吴晓芙,胡曰利,等. 铅锌冶炼厂土壤污染及重金属富集植物的研究[J]. 生态环境,2004,13(2):156-167.
[53]魏树和,周启星,王新,等. 某铅锌矿坑口周围具有重金属超积累特征植物的研究[J]. 环境污染治理技术与设备,2004,5(3):33-39.
[54]周建军,周桔,冯仁国. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊,2014,29(3):315-320.
[55]Sayler G S,Ripp S. Field applications of genetically engineered microorganisms for bioremediation processes[J]. Current Opinion in Biotechnology,2000,11(3):286-289.
[56]Verma N,Singh M. Biosensors for heavy metals[J]. Biometals,2005,18(2):121-129.
[57]Bruschi M,Goulhen F. New bioremediation technologies to remove heavy metals and radionuclides using Fe (Ⅲ)-,sulfate-and sulfur-reducing bacteria[M]. Springer Berlin Heidelberg:Environmental Bioremediation Technologies,2007:35-55.
[58]Divya B,Kumar M D. Plant-microbe interaction with enhanced bioremediation[J]. Research Journal of Biotechnology,2011,6(4):72-79.
[59]Kostal J,Yang R,Wu C H,et al. Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR[J]. Applied and Environmental Microbiology,2004,70(8):4582-4587.
[60]Kang S H,Singh S,Kim J Y,et al. Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation[J]. Applied and Environmental Microbiology,2007,73(19):6317-6320.
[61]Hasin A A,Gurman S J,Murphy L M,et al. Remediation of chromium(Ⅵ) by a methane-oxidizing bacterium[J]. Environmental Science & Technology,2009,44(1):400-405.
[62]Ackerley D F,Gonzalez C F,Keyhan M,et al. Mechanism of chromate reduction by the Escherichia coli protein,NfsA,and the role of different chromate reductases in minimizing oxidative stress during chromate reduction[J]. Environmental Microbiology,2004,6(8):851-860.
[63]Valls M,Atrian S,de Lorenzo V,et al. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil[J]. Nat Biotechnol,2000,18(6):661-665.
[64]Brim H,McFarlan S C,Fredrickson J K,et al. Engineering deinococcus radiodurans for metal remediation in radioactive mixed waste environments[J]. Nature Biotechnology,2000,18(1):85-90.
[65]Murtaza I,Dutt A,Ali A. Biomolecular engineering of Escherichia coli organo-mercurial lyase gene and its expression[J]. Indian Journal of Biotechnology,2002,1(1):117-120.
[66]Zhao X W,Zhou M H,Li Q B,et al. Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli[J]. Process Biochemistry,2005,40(5):1611-1616.
[67]Kiyono M,Pan-Hou H. Genetic engineering of bacteria for environmental remediation of mercury[J]. Journal of Health Science,2006,52(3):199-204.
[68]Mrinal B,Palombo E A,Belinda D,et al. A Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22[J]. Bmc Research Notes,2009,2(1):1-7.
[69]López A,Lázaro N,Morales S,et al. Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens,4F39:a comparative study[J]. Water Air & Soil Pollution,2002,135(1/2/3/4):157-172.
[70]Sriprang R,Hayashi M,Ono H,et al. Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase.[J]. Appl Environ Microbiol,2003,69(3):1791-1796.
[71]贾昌梅,牛显春,钟华文,等. 珠江三角洲湿地污泥重金属污染特征及风险评价[J]. 江苏农业科学,2016,44(5):442-447.
[72]郭李凯,任珊珊,毕斌,等. 煤矸山下农田土壤重金属的空间分布及生态风险评价[J]. 江苏农业科学,2016,44(8):467-470.
[73]周启星,魏树和,刁春燕. 污染土壤生态修复基本原理及研究进展[J]. 农业环境科学学报,2007,26(2):419-424.
[1]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(03):386.
[2]黄凯,张杏锋,李丹.改良剂修复重金属污染土壤的研究进展[J].江苏农业科学,2014,42(01):292.
Huang Kai,et al.Research progress of remediation of heavy metals contaminated soil using soil improvers[J].Jiangsu Agricultural Sciences,2014,42(03):292.
[3]杨桂英.蕨类植物修复重金属污染的应用研究进展[J].江苏农业科学,2016,44(05):10.
Yang Guiying.Research progress of pteridophyta applied in phytoremediation of heavy metal contaminated environments[J].Jiangsu Agricultural Sciences,2016,44(03):10.
[4]潘琼,潘峰.湖南省冶矿城市土壤重金属污染现状及评估[J].江苏农业科学,2015,43(10):405.
Pan Qiong,et al.Status and evaluation of heavy metals pollution in soils around main mining cities in Hunan Province[J].Jiangsu Agricultural Sciences,2015,43(03):405.
[5]刘亚萍,赵艳玲,侯东文,等.基于CLUE-S模型重金属污染区域空间优化配置研究[J].江苏农业科学,2014,42(06):326.
Liu Yaping,et al.Study on space optimization of heavy metal pollution area based on CLUE-S model[J].Jiangsu Agricultural Sciences,2014,42(03):326.
[6]毛雪飞,吴羽晨,张家洋.重金属污染对土壤微生物及土壤酶活性影响的研究进展[J].江苏农业科学,2015,43(05):7.
Mao Xuefei,et al.Research progress on effects of heavy metal pollution on soil microorganism and soil enzyme activity[J].Jiangsu Agricultural Sciences,2015,43(03):7.
[7]石娟娟,赵艳玲,何厅厅,等.金矿区土壤铅和铜空间结构及变异规律[J].江苏农业科学,2014,42(07):373.
Shi Juanjuan,et al.Spatial structure and variation of lead and copper in goldfields soil[J].Jiangsu Agricultural Sciences,2014,42(03):373.
[8]崔世友,张蛟蛟.沿海滩涂野生叶用芥菜的耐盐性及利用潜力[J].江苏农业科学,2014,42(12):397.
Cui Shiyou,et al.Salinity tolerance and utilization potential of wild Brassica juncea in tidal field[J].Jiangsu Agricultural Sciences,2014,42(03):397.
[9]李书幻,温祝桂,陈亚茹,等.我国蔬菜重金属污染现状与对策[J].江苏农业科学,2016,44(08):231.
Li Shuhuan,et al.Current situation and countermeasures of Chinas vegetable heavy metal pollution[J].Jiangsu Agricultural Sciences,2016,44(03):231.
[10]郭李凯,任珊珊,毕斌,等.煤矸山下农田土壤重金属的空间分布及生态风险评价[J].江苏农业科学,2016,44(08):467.
Guo Likai,et al.Evaluation on distribution and ecological risk of farmland soil heavy metals under coal waste pile[J].Jiangsu Agricultural Sciences,2016,44(03):467.