[1]陈雅君,闫庆伟,张璐,等. 氮素与植物生长相关研究进展[J]. 东北农业大学学报,2013,44(4):144-148.
[2]张华珍,徐恒玉. 植物氮素同化过程中相关酶的研究进展[J]. 北方园艺,2011(20):180-183.
[3]安慧,上官周平. 植物氮素循环过程及其根域调控机制[J]. 水土保持研究,2006,13(1):83-85.
[4]钟开新,王亚琴. 植物氮素吸收与转运的研究进展[J]. 广西植物,2011,31(3):414-417.
[5]徐晓鹏,傅向东,廖红. 植物铵态氮同化及其调控机制的研究进展[J]. 植物学报,2016,51(2):152-166.
[6]莫良玉,吴良欢,陶勤南. 高等植物GS/GOGAT循环研究进展[J]. 植物营养与肥料学报,2001,7(2):223-231.
[7]Lea P J,Robinson S A,Stewart G R. The enzymology and metabolism of glutamine,glutamate,and asparagine[J]. Intermediary Nitrogen Metabolism,1990,62(1):121-159.
[8]Joy K W,Blackwell R D,Lea P J. Assimilation of nitrogen in mutants lacking enzymes of the glutamate synthase cycle[J]. Journal of Experimental Botany,1992,43(247):139-145.
[9]Lea P J,Miflin B J. Alternative route for nitrogen assimilation in higher plants[J]. Nature,1974,251(5476):614.
[10]吴巍,赵军. 植物对氮素吸收利用的研究进展[J]. 中国农学通报,2010,26(13):75-78.
[11]韩娜,葛荣朝,赵宝存,等. 植物谷氨酰胺合成酶研究进展[J]. 河北师范大学学报(自然科学版),2004,28(4):407-410.
[12]李常健,林清华. 高等植物中氨同化酶及其同工酶研究[J]. 湖南科技学院学报,2000(3):20-22.
[13]Lea P J,Miflin B J. Glutamate synthase and the synthesis of glutamate in plants[J]. Plant Physiology & Biochemistry,2003,41(6):555-564.
[14]郑朝峰. 植物的谷氨酸合成酶[J]. 植物生理学报,1986(3):7-14.
[15]Tempest D W,Meers J L,Brown C M. Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route[J]. Biochemical Journal,1970,117(2):405-407.
[16]Meers J L,Tempest D W,Brown C M. Glutamine(amide):2-oxoglutarate amino transferase oxido-reductase (NADP): an enzyme involved in the synthesis of glutamate by some bacteria[J]. J Gen Microbiol,1970,64(2):187-194.
[17]Brown C M,Macdonald-Brown D S,Meers J L. Physiological aspects of microbial inorganic nitrogen metabolism[J]. Advances in Microbial Physiology,1974,11(1):1-52.
[18]Magalhaes A C,Neyra C A,Hageman R H. Nitrite assimilation and amino nitrogen synthesis in isolated spinach chloroplasts[J]. Plant Physiology,1974,53(3):411-415.
[19]Miflin B J. Nitrite reduction in leaves: studies on isolated chloroplasts[J]. Planta,1974,116(3):187-196.
[20]Ireland R J,Lea P J. The enzymes of glutamine,glutamate,asparagine and aspartate metabolism[M]//Singh B K. Plant amino acids:biochemistry and biotechnology. New York: Marcel Dekker,1999:49-109.
[21]Miflin B J. The location of nitrite reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves[J]. Plant Physiology,1974,54(4):550-555.
[22]Dougall D K. Evidence for the presence of glutamate synthase in extracts of carrot cell cultures[J]. Biochemical & Biophysical Research Communications,1974,58(3):639-646.
[23]Suzuki A,Jacquot J P,Gadal P. Glutamate synthase in rice roots. Studies on the electron donor specificity[J]. Phytochemistry,1983,22(7):1543-1546.
[24]Suzuki A,Vidal J,Gadal P. Glutamate synthase isoforms in rice[J]. Plant Physiology,1982,70(3):827-832.
[25]Suzuki A,Gadal P. Glutamate synthase from rice leaves[J]. Plant Physiology,1982,69(4):848-852.
[26]Coschigano K T,Melooliveira R,Lim J,et al. Arabidopsis gls mutants and distinct Fd-GOGAT genes: implications for photorespiration and primary nitrogen assimilation[J]. Plant Cell,1998,10(5):741-752.
[27]Anderson J W,Walker D A. Ammonia assimilation and oxygen evolution by a reconstituted chloroplast system in the presence of 2-oxoglutarate and glutamate[J]. Planta,1983,159(3):247-253.
[28]Wallsgrove R M,Lea P J,Miflin B J. Distribution of the enzymes of nitrogen assimilation within the pea leaf cell[J]. Plant Physiology,1979,63(2):232-236.
[29]Cullimore J V,Sims A P. Occurrence of two forms of glutamate synthase in Chlamydomonas reinhardii[J]. Phytochemistry,1981,20(4):597-600.
[30]Marquez A J,Avila C,Forde B G,et al. Ferredoxin-glutamate synthase from barley leaves:rapid purification and partial characterisation[iron-sulphurflavo protein,affinity chromatography[J]. Plant Physiology & Biochemistry,1988,26(5):645-650.
[31]Suzuki A,Gadal P. Glutamate synthase:physicochemical and functional properties of different forms in higher plants and in other organisms[J]. Physiologie Vegetale,1984,22:471-486.
[32]Vidal J,Suzuki A,Gadal P,et al. Detection of the messenger RNA encoding for the ferredoxin-dependent glutamate synthase in maize leaf[J]. Plant Physiology,1986,80(4):859-862.
[33]Botella J R,Valpuesta V. Immunocytolocalization of Ferredoxin-GOGAT in the cells of green leaves and cotyledons of Lycopersicon esculentu[J]. Plant Physiology,1988,87(1):255-257.
[34]Becker T W,Carrayol E,Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves:localization,relative proportion and their role in ammonium assimilation or nitrogen transport[J]. Planta,2000,211(6):800-806.
[35]Harel E,Lea P J,Miflin B J. The localisation of enzymes of nitrogen assimilation in maize leaves and their activities during greening[J]. Planta,1977,134(2):195-200.
[36]Yamaya T,Hayakawa T,Tanasawa K,et al. Tissue distribution of glutamate synthase and glutamine synthetase in rice leaves:occurrence of NADH-dependent glutamate synthase protein and activity in the unexpanded,nongreen leaf blades[J]. Plant Physiology,1992,100(3):1427-1432.
[37]Tobin A K,Yamaya T. Cellular compartmentation of ammonium assimilation in rice and barley[J]. Journal of Experimental Botany,2001,52(356):591-604.
[38]Suárez M F,Avila C,Gallardo F,et al. Molecular and enzymatic analysis of ammonium assimilation in woody plants[J]. Journal of Experimental Botany,2002,53(370):891-904.
[39]Emes M J,Fowler M W. The intracellular location of the enzymes of nitrate assimilation in the apices of seedling pea roots[J]. Planta,1979,144(3):249-253.
[40]Suzuki A,Oaks A. Intracellular distribution of enzymes associated with nitrogen assimilation in roots[J]. Planta,1981,151(5):457-461.
[41]Bowsher C G,Boulton E L,Rose J,et al. Reductant for glutamate synthase in generated by the oxidative pentose phosphate pathway in non-photosynthetic root plastids[J]. Plant Journal,1992,2(6):893-898.
[42]Miflin B J,Lea P J. Glutamine and asparagine as nitrogen donors for reductant-dependent glutamate synthesis in pea roots[J]. Biochemical Journal,1975,149(2):403-409.
[43]Hayakawa T,Hopkins L,Peat L J,et al. Quantitative intercellular localization of NADH-dependent glutamate synthase protein in different types of root cells in rice plants[J]. Plant Physiology,1999,119(2):409-416.
[44]Pajuelo P,Pajuelo E,Forde B G,et al. Regulation of the expression of ferredoxin-glutamate synthase in barley[J]. Planta,1997,203(4):517-525.
[45]Migge A,Carrayol E,Kunz C,et al. The expression of the tobacco genes encoding plastidic glutamine synthetase or ferredoxin-dependent glutamate synthase does not depend on the rate of nitrate reduction,and is unaffected by suppression of photorespiration[J]. Journal of Experimental Botany,1997,48(6):1175-1184.
[46]Yamaya T,Tanno H,Hirose N,et al. A supply of nitrogen causes increase in the level of NADH-dependent glutamate synthase protein and in the activity of the enzyme in roots of rice seedlings[J]. Plant & Cell Physiology,1995,36(7):1197-1204.
[47]Suzuki A,Knaff D B. Glutamate synthase:structural,mechanistic and regulatory properties,and role in the amino acid metabolism[J]. Photosynthesis Research,2005,83(2):191-217.
[48]Hirose N,Hayakawa T,Yamaya T. Inducible accumulation of mRNA for NADH-dependent glutamate synthase in rice roots in response to ammonium ions[J]. Plant & Cell Physiology,1997,38(11):1295-1297.
[49]Turano F J,Muhitch M J. Differential accumulation of ferredoxin- and NADH-dependent glutamate synthase activities,peptides,and transcripts in developing soybean seedlings in response to light,nitrogen,and nodulation[J]. Physiologia Plantarum,1999,107(4):407-418.
[50]Pérez-Tienda J,Corrêa A,Azcón-Aguilar C,et al. Transcriptional regulation of host NH4+ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots[J]. Plant Physiol Biochem,2014,75(8):1-8.
[51]Suzuki A,Rothstein S. Structure and regulation of ferredoxin-dependent glutamase synthase from Arabidopsis thaliana. Cloning of cDNA expression in different tissues of wild-type and gltS mutant strains,and light induction[J]. European Journal of Biochemistry,2010,243(3):708-718.
[52]Emes M J,Tobin A K. Control of metabolism and development in higher plant plastids[J]. International Review of Cytology,1993,145(Sl):149-216.
[53]Masclaux C,Valadier M H,Brugière N,et al. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence[J]. Planta,2000,211(4):510-518.
[54]Loulakakis K A,Primikirios N I,Nikolantonakis M A,et al. Immunocharacterization of Vitis vinifera L. ferredoxin-dependent glutamate synthase,and its spatial and temporal changes during leaf development[J]. Planta,2002,215(4):630-638.
[55]Hirose N,Yamaya T. Okadaic Acid mimics nitrogen-stimulated transcription of the NADH-glutamate synthase gene in rice cell cultures[J]. Plant Physiology,1999,121(3):805-812.
[56]Ishizaki T,Ohsumi C,Totsuka K,et al. Analysis of glutamate homeostasis by overexpression of Fd-GOGAT gene in Arabidopsis thaliana[J]. Amino Acids,2010,38(3):943-950.
[57]Kissen R,Winge P,Tran D H T,et al. Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome[J]. BMC Genomics,2010,11(1):190.
[58]Yang X L,Nian J,Xie Q,et al. Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies[J]. Molecular Plant,2016,9(11):1520-1534.
[59]Zeng D D,Qin R,Li M,et al. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice[J]. Molecular Genetics and Genomics,2017,292(2):385-395.
[60]Chichkova S,Arellano J,Vance C P,et al. Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content[J]. Journal of Experimental Botany,2001,52(364):2079-2087.
[61]Yamaya T,Obara M,Nakajima H,et al. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice[J]. Journal of Experimental Botany,2002,53(370):917-925.
[62]Schoenbeck M A,Temple S J,Trepp G B,et al. Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene.[J]. Journal of Experimental Botany,2000,51(342):29-39.
[63]Lancien M,Martin M,Hsieh M H,et al. Arabidopsis glt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway[J]. Plant Journal for Cell & Molecular Biology,2002,29(3):347-358.
[64]Konishi N,Ishiyama K,Matsuoka K,et al. NADH-dependent glutamate synthase plays a crucial role in assimilating ammonium in the Arabidopsis root[J]. Physiologia Plantarum,2014,9(8):138-151.
[65]Tamura W,Hidaka Y,Tabuchi M,et al. Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants[J]. Amino Acids,2010,39(4):1003-1012.
[66]Tamura W,Kojima S,Toyokawa A,et al. Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice[J]. Frontiers in Plant Science,2011,2(12):57.
[67]Lu Y E,Luo F,Yang M,et al. Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.)[J]. Science China Life Sciences,2011,54(7):651-663.
[68]Yamaya T,Kusano M. Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases in rice[J]. Journal of Experimental Botany,2014,65(19):5519-5525.
[1]韩霜.弱光对菊花光合特性和氮代谢关键酶活性的影响[J].江苏农业科学,2017,45(19):217.
Han Shuang.Effects of weak light on photosynthetic characteristics and activities of key enzyme in nitrogen metabolism of Chrysanthemum morifolium[J].Jiangsu Agricultural Sciences,2017,45(09):217.