[1]蒋金豹,陈云浩,黄文江. 用高光谱微分指数估测条锈病胁迫下小麦冠层叶绿素密度[J]. 光谱学与光谱分析,2010,30(8):2243-2247.
[2]徐新刚,赵春江,王纪华,等. 新型光谱曲线特征参数与水稻叶绿素含量间的关系研究[J]. 光谱学与光谱分析,2011,31(1):188-191.
[3]Mark S,Anatoly G,Donald C R. Nondestructive estimation of leaf chlorophyll content in grapes[J]. American Journal of Enology & Viticulture,2008,59(3):299-305.
[4]张瑶,郑立华,李民赞,等. 基于光谱特征分析的苹果树叶片营养素预测模型构建[J]. 农业工程学报,2013(8):171-178.
[5]李敏夏. 苹果叶片光谱反射率与叶绿素和全氮含量的相关研究[D]. 杨凌:西北农林科技大学,2009.
[6]李萍. 基于光谱分析的库尔勒香梨叶片全氮、全磷含量估测模型建立[D]. 乌鲁木齐:新疆农业大学,2013.
[7]张蕾蕾. 苹果幼树叶片叶绿素与水分含量的高光谱估测研究[D]. 泰安:山东农业大学,2013.
[8]王丽爱,周旭东,朱新开,等. 基于HJ-CCD数据和随机森林算法的小麦叶面积指数反演[J]. 农业工程学报,2016(3):149-154.
[9]李粉玲,王力,刘京,等. 基于高分一号卫星数据的冬小麦叶片SPAD值遥感估算[J]. 农业机械学报,2015,46(9):273-281.
[10]王丽爱,马昌,周旭东,等. 基于随机森林回归算法的小麦叶片SPAD值遥感估算[J]. 农业机械学报,2015,46(1):259-265.
[11]韩兆迎,朱西存,房贤一,等. 基于SVM与RF的苹果树冠LAI高光谱估测[J]. 光谱学与光谱分析,2016,36(3):800-805.
[12]岳继博,杨贵军,冯海宽. 基于随机森林算法的冬小麦生物量遥感估算模型对比[J]. 农业工程学报,2016(18):175-182.
[13]Lichtenthaler H K. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes[J]. Methods in Enzymology,1987,148:350-382.
[14]Peuelas J,Gamon J A,Fredeen A L,et al. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves[J]. Remote Sensing of Environment,1994,48(2):135-146.
[15]Peuelas J,Filella I,Lloret P,et al. Reflectance assessment of mite effects on apple trees[J]. International Journal of Remote Sensing,1995,16(14):2727-2733.
[16]Daughtry C S T,Walthall C L,Kim M S,et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment,2000,74(2):229-239.
[17]Haboudane D,Miller J R,Pattey E,et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment,2004,90(3):337-352.
[18]Haboudane D,Miller J R,Tremblay N,et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment,2002,81(2):416-426.
[19]Dash J,Curran P J. The MERIS terrestrial chlorophyll index[J]. International Journal of Remote Sensing,2004,25(23):5403-5413.
[20]Sims D A,Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species,leaf structures and developmental stages[J]. Remote Sensing of Environment,2002,81(2/3):337-354.
[21]Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment,1979,8(2):127-150.
[22]Gitelson A A,Merzlyak M N,Chivkunova O B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves[J]. Photochemistry and Photobiology,2001,74(1):38-45.
[23]Roujean J L,Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment,1995,51(3):375-384.
[24]Qi J,Chehbouni A,Huete A R,et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment,1994,48(2):119-126.
[25]Horler D N H,Dockray M,Barber J. The red edge of plant leaf reflectance[J]. International Journal of Remote Sensing,1983,4(2):273-288.
[26]Vincini M,Frazzi E,DAlessio P. Narrow-band vegetation indexes from hyperion and directional chris/proba data for canopy chlorophyll density[C]//Envisat Symposium 2007.Montr eux,Switzerland,2007.
[27]Gitelson A A,Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves[J]. International Journal of Remote Sensing,1997,18(12):2691-2697.
[28]Vogelmann J E,Rock B N,Moss D M. Red edge spectral measurements from sugar maple leaves[J]. International Journal of Remote Sensing,1993,14(8):1563-1575.
[29]Zarco-Tejada P J,Miller J R,Noland T L,et al. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data[J]. IEEE Transactions on Geoscience & Remote Sensing,2001,39(7):1491-1507.
[30]Mahlein A K,Steiner U,Dehne H W,et al. Spectral signatures of sugar beet leaves for the detection and differentiation of diseases[J]. Precision Agriculture,2010,11(4):413-431.
[31]Zarco-Tejada P J,Pushnik J C,Dobrowski S,et al. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects[J]. Remote Sensing of Environment,2003,84(2):283-294.
[32]Kim M S,Daughtry C T,Chapelle E W. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation(Apar.)[C]//Proceedingsof the Sixth Symposium on Physical Measurements and Signatures in Remote Sensing.Val DIsure,France,1994:299.
[33]Chen P F,Haboudane D,Tremblay N,et al. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat[J]. Remote Sensing of Environment,2010,114(9):1987-1997.
[34]Jin X,Li Z,Feng H,et al. Newly combined spectral indices to improve estimation of total leaf chlorophyll content in cotton[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2014,7(1):4589-4600.
[35]Breiman L. Random forests[J]. Machine Learning,2001,45(1):5-32.
[36]Breiman L. Bagging predictors[J]. Machine Learning,1996,24(2):123-140.
[37]王惠文,孟洁. 多元线性回归的预测建模方法[J]. 北京航空航天大学学报,2007,33(4):500-504.
[38]李旭青,刘湘南,刘美玲,等. 水稻冠层氮素含量光谱反演的随机森林算法及区域应用[J]. 遥感学报,2014,18(4):923-945.
[39]Verikas A,Gelzinis A,Bacauskiene M. Mining data with random forests:a survey and results of new tests[J]. Pattern Recognition,2011,44(2):330-349.
[1]赵文,刘国顺,贾方方,等.烤烟烟碱含量的高光谱预测模型[J].江苏农业科学,2014,42(03):275.
Zhao Wen,et al.Hyperspectral prediction model of nicotine content in flue-cured tobacco[J].Jiangsu Agricultural Sciences,2014,42(17):275.
[2]孙俊,金夏明,毛罕平,等.基于有监督特征提取的生菜叶片农药残留浓度高光谱鉴别研究[J].江苏农业科学,2014,42(05):227.
Sun Jun,et al.Study on detection of hyperspectral data of lettuce leaves with pesticide residue based on supervised feature extraction method[J].Jiangsu Agricultural Sciences,2014,42(17):227.
[3]王有宁,赵丽艳,章爱群,等.花生高光谱叶片营养诊断研究[J].江苏农业科学,2014,42(12):129.
Wang Youning,et al.Study on nutrition diagnosis of peanut leaves based on hyperspectral data[J].Jiangsu Agricultural Sciences,2014,42(17):129.
[4]杨粉团,顾晓鹤,李刚,等.吐丝期玉米倒伏后地面高光谱特征参数分析[J].江苏农业科学,2016,44(03):85.
Yang Fentuan,et al.Analysis of hyper-spectral characteristic parameters of lodging corn at silking stage[J].Jiangsu Agricultural Sciences,2016,44(17):85.
[5]田敏,周杰,张泽,等.基于高光谱植被指数对棉花叶绿素含量的估算[J].江苏农业科学,2017,45(02):216.
Tian Min,et al.Estimation of cotton chlorophyll contents based on hyperspectral vegetation index[J].Jiangsu Agricultural Sciences,2017,45(17):216.
[6]喻俊,李晓敏,张权,等.基于实测高光谱数据的太湖湖滨带典型植被分类[J].江苏农业科学,2017,45(05):240.
Yu Jun,et al.Classification of typical vegetation zones of Taihu Lake based on measured hyperspectral data[J].Jiangsu Agricultural Sciences,2017,45(17):240.
[7]杨荣超,田海清,李斐,等.基于甜菜冠层高光谱红边参数的SPAD值诊断[J].江苏农业科学,2017,45(11):153.
Yang Rongchao,et al.SPAD value diagnosis based on red edge parameters of sugarbeet canopy hyperspectral[J].Jiangsu Agricultural Sciences,2017,45(17):153.
[8]张城芳,董恒.基于高光谱数据的作物净初级生产力估算方法[J].江苏农业科学,2017,45(22):260.
Zhang Chengfang,et al.Estimation method of crop net primary productivity based on hyperspectral data[J].Jiangsu Agricultural Sciences,2017,45(17):260.
[9]向佳琳,姚鑫锋,刘倩,等.基于高光谱的温室网纹甜瓜不同叶位叶片含水率监测[J].江苏农业科学,2018,46(04):105.
Xiang Jialin,et al.Hyperspectral monitoring of leaf water content in different leaf position of muskmelon in greenhouse[J].Jiangsu Agricultural Sciences,2018,46(17):105.
[10]叶春,李艳大,舒时富,等.基于高光谱的柑橘叶片氮素营养监测模型[J].江苏农业科学,2018,46(07):223.
Ye Chun,et al.Study on nitrogen nutrition monitoring model of citrus leaves based on hyperspectrum[J].Jiangsu Agricultural Sciences,2018,46(17):223.