[1]Meng F H,Wei Y Z,Yang X E. Iron content and bioavailability in rice[J]. Journal of Trace Elements in Medicine & Biology,2005,18(4):333-338.
[2]Guerinot M L,Yi Y. Iron:nutritious,noxious,and not readily available[J]. Plant Physiology,1994,104(3):815-820.
[3]王璐. 缺铁响应转录因子OsbHLH133的功能和缺铁诱导乙烯合成分子机理的研究[D]. 杭州:浙江大学,2013.
[4]Sperotto R A,Ricachenevsky F K,de Abreu W V,et al. Iron biofortification in rice:its a long way to the top[J]. Plant Science,2012,190:24-39.
[5]Rmheld V,Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses[J]. Plant Physiology,1986,80(1):175-180.
[6]Bell W D,Bogorad L,McIlrath W J. Yellow-stripe phenotype in maize Ⅰ. Effects of ys1 locus on uptake and utilization of iron[J]. Botanical Gazette,1962,124(1):1-8.
[7]Curie C,Panaviene Z,Loulergue C,et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(Ⅲ) uptake[J]. Nature,2001,409(6818):346-349.
[8]Ishimaru Y,Suzuki M,Tsukamoto T,et al. Rice plants take up iron as an Fe3+ -phytosiderophore and as Fe2+[J]. Plant Journal,2006,45(3):335-346.
[9]Cheng L J,Wang F,Shou H X,et al. Mutation in nicotianamine aminotransferase stimulated the Fe(Ⅱ) acquisition system and led to iron accumulation in rice[J]. Plant Physiol,2007,145(4):1647-1657.
[10]Bashir K,Ishimaru Y,Shimo H,et al. Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron[J]. Soil Science and Plant Nutrition,2011,57(6):803-812.
[11]Xiong H,Kakei Y,Kobayashi T,et al. Molecular evidence for phytosiderophore‐induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil[J]. Plant,Cell & Environment,2013,36(10):1888-1902.
[12]Marschner H. Mineral nutrition of higher plants[M]. 2nd ed. London:Academic Press,1995.
[13]Kobayashi T,Itai R N,Aung M S,et al. The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status[J]. The Plant Journal,2012,69(1):81-91.
[14]Kobayashi T,Nagasaka S,Senoura T,et al. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation[J]. Nature Communications,2013,4:2792.
[15]Long T A. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots[J]. Plant Cell,2010,22(7):2219-2236.
[16]Kobayashi T,Nishizawa N K . Iron uptake,translocation,and regulation in higher plants[J]. Annual Review of Plant Biology,2012,63(1):131-152.
[17]Hindt M N,Guerinot M L. Getting a sense for signals:regulation of the plant iron deficiency response[J]. BBA-Molecular Cell Research,2012,1823(9):1521-1530.
[18]Kobayashi T,Ogo Y,Itai R N,et al. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants[J]. Proceedings of the National Academy of Sciences,2007,104(48):19150-19155.
[19]Kakei Y,Ogo Y,Itai R N,et al. Development of a novel prediction method of cis-elements to hypothesize collaborative functions of cis-element pairs in iron-deficient rice[J]. Rice,2013,6(1):22.
[20]Kobayashi T,Ogo Y,Aung M S,et al. The spatial expression and regulation of transcription factors IDEF1 and IDEF2[J]. Annals of Bbotany,2010,105(7):1109-1117.
[21]Zhang L X,Itai R N,Yamakawa T,et al. The bowman-birk trypsin inhibitor IBP1 interacts with and prevents degradation of idef1 in rice[J]. Plant Molecular Biology Reporter,2014,32(4):841-851.
[22]Long T A,Tsukagoshi H,Busch W,et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots[J]. The Plant Cell,2010,22(7):2219-2236.
[23]Kobayashi T,Nishizawa N K. Iron sensors and signals in response to iron deficiency[J]. Plant Science,2014;224(13):36-43.
[24]Wu J J,Wang C,Zheng L Q,et al. Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa[J]. Journal of Experimental Botany,2010,62(2):667-674.
[25]Bashir K,Nozoye T,Ishimaru Y,et al. Exploiting new tools for iron bio-fortification of rice[J]. Biotechnology Advances,2013,31(8):1624-1633.
[26]Qi Y H,Wang S K,Shen C J,et al. OsARF12,a transcription activator on auxin response gene,regulates root elongation and affects iron accumulation in rice (Oryza sativa)[J]. New Phytologist,2012,193(1):109-120.
[27]Robinson N J,Procter C M,Connolly E L,et al. A ferric-chelate reductase for iron uptake from soils[J]. Nature,1999,397(6721):694-697.
[28]Bughio N,Yamaguchi H,Nishizawa NK et al. Cloning an iron-regulated metal transporter from rice[J]. J Exp Bot,2002,53:1677-1682.
[29]Ishimaru Y,Bashir K,Nishizawa N K. Zn uptake and translocation in rice plants[J]. Rice,2011,4(1):21-27.
[30]Ishimaru Y,Kakei Y,Shimo H,et al. A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele[J]. Journal of Biological Chemistry,2011,286(28):24649-24655.
[31]Takahashi R,Ishimaru Y,Senoura T,et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany,2011,62(14):4843-4850.
[32]常正尧. 水稻缺铁胁迫下渗透酶基因的克隆、亚细胞定位及膜泡运输相关基因的分析[D]. 北京:首都师范大学,2006.
[33]Inoue H,Higuchi K,Takahashi M et al. Three rice nicotianamine synthase genes,OsNAS1,OsNAS2,and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron[J]. Plant Journal,2003,36(3):366-381.
[34]Inoue H,Takahashi M,Kobayashi T,et al. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice[J]. Plant Molecular Biology,2008,66(1/2):193-203.
[35]Bashir K,Nishizawa N. Deoxymugineic acid synthase:a gene important for Fe-acquisition and homeostasis[J]. Plant Signaling & Behavior,2006,1(6):290-292.
[36]Nozoye T,Nagasaka S,Kobayashi T,et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants[J]. Journal of Biological Chemistry,2011,286(7):5446-5454.
[37]Lee S,Chiecko J C,Kim S A,et al. Disruption of OsYSL15 leads to iron inefficiency in rice plants[J]. Plant Physiology,2009,150(2):786-800.
[38]Kobayashi T,Nakayama Y,Itai R N,et al. Identification of novel cis-acting elements,IDE1 and IDE2,of the barley IDS2 gene promoter conferring iron‐deficiency‐inducible,root-specific expression in heterogeneous tobacco plants[J]. The Plant Journal,2003,36(6):780-793.
[39]Ogo Y,Nakanishi Itai R,Nakanishi H,et al. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe‐deficient conditions[J]. The Plant Journal,2007,51(3):366-377.
[40]Ogo Y,Itai R N,Kobayashi T,et al. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil[J]. Plant Molecular Biology,2011,75(6):593-605.
[41]Zheng L,Cheng Z,Ai C,et al. Nicotianamine,a novel enhancer of rice iron bioavailability to humans[J]. PLoS One,2010,5(4):e10190.
[42]Tsukamoto T,Nakanishi H,Uchida H,et al. 52Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS):evidence for the direct translocation of Fe from roots to young leaves via phloem[J]. Plant and Cell Physiology,2008,50(1):48-57.
[43]沈宏,杨旭健,傅友强. 一个水稻铁转运基因(OsFRDL1)参与缺氧诱导根系铁膜形成的调节过程[J]. 科学通报,2014,59(9):787-795.
[44]Inoue H,Mizuno D,Takahashi M,et al. A rice FRD3-like (OsFRDL1) gene is expressed in the cells involved in long-distance transport[J]. Soil Science and Plant Nutrition,2004,50(7):1133-1140.
[45]Koike S,Inoue H,Mizuno D,et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem[J]. The Plant Journal,2004,39(3):415-424.
[46]Ishimaru Y,Masuda H,Bashir K,et al. Rice metal-nicotianamine transporter,OsYSL2,is required for the long‐distance transport of iron and manganese[J]. The Plant Journal,2010,62(3):379-390.
[47]Yoshino M,Murakami K. Interaction of iron with polyphenolic compounds:application to antioxidant characterization[J]. Analytical Biochemistry,1998,257(1):40-44.
[48]张会敏. 水稻铁稳态正调控因子OsPRI1促进铁平衡[D]. 合肥:中国科学技术大学,2018.
[49]Ishimaru Y,Bashir K,Nakanishi H,et al. The role of rice phenolics efflux transporter in solubilizing apoplasmic iron[J]. Plant Signaling & Behavior,2011,6(10):1624-1626.
[50]Nishiyama R,Kato M,Nagata S,et al. Identification of Zn-nicotianamine and Fe-2′-deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.)[J]. Plant and Cell Physiology,2012,53(2):381-390.
[51]Inoue H,Kobayashi T,Nozoye T,et al. Rice OsYSL15 is an iron-regulated iron (Ⅲ)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings[J]. Journal of Biological Chemistry,2009,284(6):3470-3479.
[52]Aoyama T,Kobayashi T,Takahashi M,et al. OsYSL18 is a rice iron (Ⅲ)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints[J]. Plant Molecular Biology,2009,70(6):681-692.
[53]Zheng L,Yamaji N,Yokosho K,et al. YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice[J]. The Plant Cell,2012,24(9):3767-3782.
[54]Haas J D,Beard J L,Murray-Kolb L E,et al. Iron-biofortified rice improves the iron stores of nonanemic Filipino women[J]. The Journal of Nutrition,2005,135(12):2823-2830.
[55]Gregorio G B,Senadhira D,Htut T. Improving iron and zinc value of rice for human nutrition[J]. Agriculture et Developpement,1999(23):77-81.
[56]Gregorio G B,Senadhira D,Htut H,et al. Breeding for trace mineral density in rice[J]. Food and Nutrition Bulletin,2000,21(4):382-386.
[57]曾亚文,刘家富,汪禄祥,等. 云南稻核心种质矿质元素含量及其变种类型[J]. 中国水稻科学,2003,17(1):26-31.
[58]董彦君. 日本新性状稻米品质研究进展[J]. 中国稻米,1998(1):36-38.
[59]吴敬德,郑乐娅,张瑛,等. 富含铁锌水稻的筛选[J]. 安徽农业科学,2006,34(4):635.
[60]Cabuslay G S,Sison C B,Laureles E,et al. Grain mineral density:nitrogen response and seasonal variation[J]. Workshop on Rice Breeding for Better Nutrition,2003(4):7-11.