[1]Shanmugam,S,Magbanua Z,Williams M A,et al. Bacterial diversity patterns differ in soils developing in sub-tropical and cool-temperate ecosystems[J]. Microbial Ecology,2017,73(3):556-569.
[2]孙怀博. 青藏高原阿里地区土壤细菌群落多样性及其分布的研究[D]. 南京:南京农业大学,2013.
[3]张宪洲,杨永平,朴世龙,等. 青藏高原生态变化[J]. 科学通报,2015,60(32):3048-3056.
[4]Requena N,Perez-Solis E,Azcon-Aguilar C,et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems[J]. Applied and Environmental Microbiology,2001,67(2):495-498.
[5]杨海君,肖启明,刘安元. 土壤微生物多样性及其作用研究进展[J]. 南华大学学报(自然科学版),2005,19(4):21-26,31.
[6]林先贵,胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报,2008,45(5):892-900.
[7]周桔,雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望[J]. 生物多样性,2007,15(3):306-311.
[8]Shang W,Zhao L,Wu X D,et al. Soil organic matter fractions under different vegetation types in permafrost regions along the Qinghai-Tibet Highway,north of Kunlun Mountains,China[J]. Journal of Mountain Science,2015,12(4):1010-1024.
[9]Rui J P,Li J B,Wang S P,et al. Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau[J]. Applied and Environmental Microbiology,2015,81(17):6070-6077.
[10]顾振宽,杜国祯,朱炜歆,等. 青藏高原东部不同草地类型土壤养分的分布规律[J]. 草业科学,2012,29(4):507-512.
[11]Zhang X,Johnston E R,Barberan A,et al. Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity[J]. Global change biology,2017,23(10):4318-4332.
[12]Hu W G,Zhang Q,Tian T,et al. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau[J]. Extremophiles,2016,20(3):337-349.
[13]Wang N F,Zhang T,Zhang F,et al. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing[J]. Frontiers in microbiology,2015,6:1188.
[14]Manoharan L,Rosenstock N P,Williams A,et al. Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity[J]. Applied Soil Ecology,2017,115:53-59.
[15]Lei Y P,Xiao Y L,Li L F,et al. Impact of tillage practices on soil bacterial diversity and composition under the tobacco-rice rotation in China[J]. Journal of Microbiology,2017,55(5):349-356.
[16]泽让东科,文勇立,艾鷖,等. 放牧对青藏高原高寒草地土壤和生物量的影响[J]. 草业科学,2016,33(10):1975-1980.
[17]Maharjan M,Sanaullah M,Razavi B S,et al. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils[J]. Applied Soil Ecology,2017,113:22-28.
[18]Cambi M,Paffetti D,Vettori C A,et al. Assessment of the impact of forest harvesting operations on the physical parameters and microbiological components on a Mediterranean sandy soil in an Italian stone pine stand[J]. European Journal of Forest Research,2017,136(2):205-215.
[19]Wang Y S,Li C N,Kou Y P,et al. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows[J]. Soil Biology & Biochemistry,2017,115:547-555.
[20]Li W B,Bai Z,Jin C J,et al. The influence of tree species on small scale spatial heterogeneity of soil respiration in a temperate mixed forest[J]. Science of the Total Environment,2017,590/591:242-248.
[21]Chen L J,Li C S,Feng Q,et al. Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China[J]. Science of the Total Environment,2017,598:64-70.
[22]Santonja M,Rancon A,Fromin N,et al. Plant litter diversity increases microbial abundance,fungal diversity,and carbon and nitrogen cycling in a Mediterranean shrubland[J]. Soil Biology & Biochemistry,2017,111:124-134.
[23]Sˇtovícˇek A,AekAzatyan A,Soares M I M,et al. The impact of hydration and temperature on bacterial diversity in arid soil mesocosms[J]. Frontiers in Microbiology,2017,8:1078.
[24]Wang C T,Zhao X Q,Zi H B,et al. The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau[J]. Applied Soil Ecology,2017,116:30-41.
[25]斯贵才,王光鹏,雷天柱,等. 青藏高原东北缘土壤微生物群落结构变化[J]. 干旱区研究,2015,32(5):849-855.
[26]曹宏杰,倪红伟. 土壤微生物多样性及其影响因素研究进展[J]. 国土与自然资源研究,2015(3):85-88.
[27]Kirk J L,Beaudette L A,Hart M,et al. Methods of studying soil microbial diversity[J]. Journal of Microbiological Methods,2004,58(2):169-188.
[28]蔡晨秋,唐丽,龙春林. 土壤微生物多样性及其研究方法综述[J]. 安徽农业科学,2011,39(28):17274-17276,17278.
[29]李洁,李睿玉,杨红,等. 土壤微生物多样性的研究方法[J]. 山西农业科学,2016,44(11):1738-1742,1746.
[30]吴才武,赵兰坡. 土壤微生物多样性的研究方法[J]. 中国农学通报,2011,27(11):231-235.
[31]Mazziotti M,Henry S,Laval-Gilly P,et al. Comparison of two bacterial DNA extraction methods from non-polluted and polluted soils[J]. Folia microbiologica,2017,63(1):85-92.
[32]Widmer F,Fliessbach A,Laczko E,et al. Assessing soil biological characteristics:a comparison of bulk soil community DNA-,PLFA-,and BiologTM-analyses[J]. Soil Biology & Biochemistry,2001,33(7/8):1029-1036.
[33]Finney D M,Buyer J S,Kaye J P. Living cover crops have immediate impacts on soil microbial community structure and function[J]. Journal of Soil and Water Conservation,2017,72(4):361-373.
[34]Meeboon N,Leewis M C,Kaewsuwan S,et al. Changes in bacterial diversity associated with bioremediation of used lubricating oil in tropical soils[J]. Archives of Microbiology,2017,199(6):839-851.
[35]Mauffret A,Bara N,Joulian C. Effect of pesticides and metabolites on groundwater bacterial community[J]. Science of the Total Environment,2017,576:879-887.
[36]Canfora L,Salvati L,Benedetti A,et al. Is soil microbial diversity affected by soil and groundwater salinity? Evidences from a coastal system in central Italy[J]. Environmental Monitoring and Assessment,2017,189(7):319.
[37]Silvani V A,Colombo R P, Scorza M V,et al. Arbuscular mycorrhizal fungal diversity in high-altitude hypersaline Andean wetlands studied by 454-sequencing and morphological approaches[J]. Symbiosis,2017,72(2):143-152.
[38]Huang C K,Shi Y J,Sheng Z Y,et al. Characterization of microbial communities during start-up of integrated fixed-film activated sludge (IFAS) systems for the treatment of oil sands process-affected water (OSPW)[J]. Biochemical Engineering Journal,2017,122:123-132.
[39]牛犇,张立峰,马荣荣,等. 高寒草甸土壤微生物量及酶活性的研究[J]. 南开大学学报(自然科学版),2016,49(4):53-60.
[40]于健龙,石红霄. 高寒草甸不同退化程度土壤微生物数量变化及影响因子[J]. 西北农业学报,2011,20(11):77-81.
[41]斯贵才,袁艳丽,王建,等. 藏东南森林土壤微生物群落结构与土壤酶活性随海拔梯度的变化[J]. 微生物学通报,2014,41(10):2001-2011.
[42]斯贵才,王建,夏燕青,等. 念青唐古拉山沼泽土壤微生物群落和酶活性随海拔变化特征[J]. 湿地科学,2014,12(3):340-348.
[43]冯虎元,马晓军,章高森,等. 青藏高原多年冻土微生物的培养和计数[J]. 冰川冻土,2004,26(2):182-187.
[44]王艳发,魏士平,崔鸿鹏,等. 青藏高原冻土区土壤垂直剖面中微生物的分布与多样性[J]. 微生物学通报,2016,43(9):1902-1917.
[45]Wu X D,Xu H Y,Liu G M,et al. Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan Plateau[J]. Applied Soil Ecology,2017,120:81-88.
[46]Boonchayaanant B,Nayak D,Du X,et al. Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions[J]. Water Research,2009,43(18):4652-4664.
[47]Long H Z,Wang Y L,Chang S J,et al. Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau[J]. Environmental Monitoring and Assessment,2017,189:116.
[48]Zhang G S,Niu F J,Ma X J,et al. Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region[J]. Canadian Journal of Microbiology,2007,53(8):1000-1010.
[49]Zhan B L,Tang S K,Chen X M,et al. Streptomyces lacrimifluminis sp nov,a novel actinobacterium that produces antibacterial compounds,isolated from soil[J]. International Journal of Systematic and Evolutionary Microbiology,2016,66(12):4981-4986.
[50]张东杰. 青藏高原高寒草甸植被与土壤特征[J]. 草业科学,2015,32(2):269-273.
[51]Zhang Y Q,Liu H Y,Chen J,et al. Diversity of culturable actinobacteria from Qinghai-Tibet Plateau,China[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,2010,98(2):213-223.
[52]Zhang X F,Xu S J,Li C M,et al. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau[J]. Research in Microbiology,2014,165(2):128-139.
[53]Zhao S Y,Zhuang L J,Wang C,et al. High-throughput analysis of anammox bacteria in wetland and dryland soils along the altitudinal gradient in Qinghai-Tibet Plateau[J]. Microbiology Open,2017,7(2):e00556.
[54]陈懂懂,孙大帅,张世虎,等. 放牧对青藏高原东缘高寒草甸土壤微生物特征的影响[J]. 兰州大学学报(自然科学版),2011,47(1):73-77,81.
[55]王蓓,孙庚,罗鹏,等. 模拟升温和放牧对高寒草甸土壤微生物群落的影响[J]. 应用与环境生物学报,2011,17(2):151-158.
[56]Zhang B,Chen S Y,He X Y,et al. Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai-Tibet Plateau[J]. PLoS One,2014,9(8):e103859.
[57]Li N,Wang G X,Gao Y H,et al. Warming effects on plant growth,soil nutrients,microbial biomass and soil enzymes activities of two Alpine Meadows in Tibetan Plateau[J]. Polish Journal of Ecology,2011,59(1):25-32.
[58]张琪. 高寒草原区不同植被恢复方式对土壤微生物的影响研究[D]. 兰州:兰州大学,2015.
[59]Xiong Q L,Pan K W,Zhang L,et al. Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai-Tibet Plateau,southwestern China[J]. Applied Soil Ecology,2016,101:72-83.
[60]Niu F,He J,Zhang G,et al. Effects of enhanced UV-B radiation on the diversity and activity of soil microorganism of alpine meadow ecosystem in Qinghai-Tibet Plateau[J]. Ecotoxicology,2014,23(10):1833-1841.
[61]程长林,任爱胜,刘鉴洪,等. 青藏高原社区畜牧业发展模式研究[J]. 江苏农业科学,2018,46(2):296-300.
[62]高丽楠,张宏. 青藏高原高寒草地土壤铁的空间异质性[J]. 江苏农业科学,2017,45(15):239-243.
[1]周虹,杨占武.青藏高原高寒沙区小叶锦鸡凋落物下土壤细菌菌群的DGGE分析[J].江苏农业科学,2015,43(12):353.
Zhou Hong,et al.Analysis of bacterial flora in alpine sand soils under litter decomposition of Caragana microphylla in Tibetan Plateau by denaturing gradient gel electrophoresis analysis[J].Jiangsu Agricultural Sciences,2015,43(14):353.
[2]孙红梅,曹连宾,郝力壮,等.酵母培养物对牦牛瘤胃发酵及甲烷产量的影响[J].江苏农业科学,2015,43(03):177.
Sun Hongmei,et al.Effects of yeast culture on yak rumen fermentation and methane emissions[J].Jiangsu Agricultural Sciences,2015,43(14):177.
[3]程长林,任爱胜,刘鉴洪,等.青藏高原社区畜牧业发展模式研究[J].江苏农业科学,2018,46(02):296.
Cheng Changlin,et al.Study on community animal husbandry development model in Qinghai-Tibet Plateau[J].Jiangsu Agricultural Sciences,2018,46(14):296.
[4]江伟,于小飞,田永兰,等.镉污染对文冠果土壤微生物的影响[J].江苏农业科学,2018,46(06):228.
Jiang Wei,et al.Effect of Cd contamination on soil microorganism of Xanthoceras sorbifolia Bunge[J].Jiangsu Agricultural Sciences,2018,46(14):228.
[5]孙添,王国杰,娄丹,等.青藏高原区域多源土壤湿度数据的对比分析[J].江苏农业科学,2018,46(10):285.
Sun Tian,et al.Contrastive analysis of multi-sensor soil moisture datasets of Tibetan Plateau[J].Jiangsu Agricultural Sciences,2018,46(14):285.
[6]王朋朋,王丹,王昊,等.长期氮、磷添加对青藏高原2种高寒草甸植物光合特性的影响[J].江苏农业科学,2019,47(13):325.
Wang Pengpeng,et al.Effects of long-term nitrogen and phosphorus addition on photosynthetic characteristics of two alpine meadow plants[J].Jiangsu Agricultural Sciences,2019,47(14):325.
[7]黄磊,曾亚军,郭金鹏,等.3种治理模式对石漠化地区土壤微生物群落结构的影响及治理能力比较[J].江苏农业科学,2021,49(12):201.
Huang Lei,et al.Effects of three control modes on soil microbial community structure in rocky desertification areas and comparison of control capabilities[J].Jiangsu Agricultural Sciences,2021,49(14):201.
[8]杜军华,姜东伯,张津京,等.青藏高原东部22株栽培与野生羊肚菌的分子进化分析[J].江苏农业科学,2022,50(7):28.
Du Junhua,et al.Molecular evolution analysis of 22 cultivated and wild Morchella strains in eastern Qinghai—Tibet Plateau[J].Jiangsu Agricultural Sciences,2022,50(14):28.
[9]崔烜玮,何进宇,杨佳鹤,等.粉垄耕作对作物生境、产量及品质影响研究现状与展望[J].江苏农业科学,2024,52(7):10.
Cui Xuanwei,et al.Research status and prospects on effects of silt ridge tillage on crop habitat, yield and quality[J].Jiangsu Agricultural Sciences,2024,52(14):10.
[10]汪自松,杨正丽,曾梓芸,等.化肥减量配施有机肥对芒果根际微生物多样性及酶活性的影响[J].江苏农业科学,2025,53(2):240.
Wang Zisong,et al.Effects of fertilizer reduction combined with organic fertilizer on rhizosphere microbial diversity and enzyme activity of Mangifera indica L.[J].Jiangsu Agricultural Sciences,2025,53(14):240.