[1]古瑜,贾占温,孙德岭,等. 植物抗病机制的研究进展[J]. 天津农业科学,2008,14(4):45-48.
[2]贾燕涛. 植物抗病信号转导途径[J]. 植物学通报,2003,20(5):602-608.
[3]Consonni C,Humphry M E,Hartmann H A,et al. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis[J]. Nature Genetics,2006,38(6):716-720.
[4]Pavan S,Jacobsen E,Visser R F,et al. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance[J]. Molecular Breeding,2010,25(1):1-12.
[5]李明想. 苹果MLO基因家族和甘露糖结合凝集素基因的克隆及表达分析[D]. 青岛:青岛农业大学,2013.
[6]Freisleben R,Lein A. ber die auffindung einer mehltauresistenten mutante nach rntgenbestrahlung einer anflligen reinen linie von sommergerste[J]. Naturwissenschaften,1942,30(40):608.
[7]Jrgensen I H. Discovery,characterization and exploitation of Mlo powdery mildew resistance in barley[J]. Euphytica,1992,63(1/2):141-152.
[8]刘宝玲,孙岩,郝青婷,等. 谷子MLO家族的全基因组鉴定和表达谱分析[J]. 核农学报,2018,32(8):1492-1501.
[9]向贵生,王开锦,晏慧君,等. 蔷薇科植物MLO蛋白家族的生物信息学分析[J]. 基因组学与应用生物学,2018(5):2043-2059.
[10]Humphry M,Reinstdler A,Ivanov S,et al. Durable broad-spectrum powdery mildew resistance in pea erq1 plants is conferred by natural loss-of-function mutations in PsMLO11[J]. Molecular Plant Pathology,2011,12(9):866-878.
[11]Büschges R,Hollricher K,Panstruga R,et al. The barley Mlo gene:a novel control element of plant pathogen resistance[J]. Cell,1997,88(5):695-705.
[12]Panstruga R. Serpentine plant MLO proteins as entry portals for powdery mildew fungi[J]. Biochemical Society Transactions,2005,33(2):389-392.
[13]邱显钦,包满珠,张颢,等. 野蔷薇(Rosa multiflora)抗白粉病基因RmMlo的克隆与表达分析[J]. 园艺学报,2011,38(10):1999-2004.
[14]王晏青. 葡萄抗白粉病相关基因Mlo的克隆与功能研究[D]. 杨凌:西北农林科技大学,2016.
[15]石甜甜,何杰丽,秦明月,等. 糜子抗白粉病基因(Mlo)编码蛋白的序列特征及表达分析[J]. 山西农业大学学报(自然科学版),2018,38(10):49-56.
[16]Bhat R A,Miklis M,Schmelzer E,et al. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain[J]. Proceedings of the National Academy of Sciences,2005,102(8):3135-3140.
[17]李凡. 小麦Mlo蛋白IL2抗体的制备以及Mlo蛋白细胞定位的特异性分析[D]. 杭州:浙江大学,2005.
[18]赵淑芳. Mlo大麦与白粉病菌互作的分子细胞学研究[D]. 杭州:浙江大学,2003.
[19]Devoto A,Hartmann H A,Piffanelli P,et al. Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family[J]. Journal of Molecular Evolution,2003,56(1):77-88.
[20]Temple B R,Jones A M. The plant heterotrimeric G-Protein complex[J]. Annual Review of Plant Biology,2007,58:249-266.
[21]邬晓勇,孙雁霞,何钢,等. 一个玉米Mlo基因的电子克隆与生物信息学分析[J]. 玉米科学,2011,19(1):148-152.
[22]Lorek J,Griebel T,Jones A M,et al. The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity[J]. Molecular Plant Microbe Interactions,2013,26(9):991-1003.
[23]Kim M C,Panstruga R,Elliott C,et al. Calmodulin interacts with MLO protein to regulate defence against mildew in barley[J]. Nature,2002,416(6879):447-451.
[24]Kim M C,Lee S H,Kim J K,et al. Mlo,a modulator of plant defense and cell death,is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue[J]. Journal of Biological Chemistry,2002,277(22):19304-19314.
[25]Devoto A,Piffanelli P,Nilsson I,et al. Topology,subcellular localization,and sequence diversity of the Mlo family in plants[J]. Journal of Biological Chemistry,1999,274(49):34993-5004.
[26]闫沛喆,周索,李雪辉,等. 全基因组水平上芸薹属Mlo抗病基因的比较分析[J]. 中国油料作物学报,2017,39(6):729-736.
[27]陈玲,邱显钦,张颢,等. 不同物种Mlo基因生物信息学分析[J]. 西南农业学报,2012,25(4):1302-1308.
[28]Chen Y B,Wang Y,Zhang H L. Genome-wide analysis of the mildew resistance locus O(MLO)gene family in tomato(Solanum lycopersicum L.)[J]. Plant Omics Journal,2014,7(2):87-93.
[29]张孝廉,张吉顺,雷波,等. 植物MLO蛋白研究进展[J]. 植物生理学报,2018,54(7):1159-1171.
[30]Feechan A,Jermakow A,Torregrosa L,et al. Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew[J]. Functional Plant Biology,2008,35(12):1255-1266.
[31]Kim D S,Choi H W,Hwang B K. Pepper mildew resistance locus O interacts with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and defense responses[J]. Planta,2014,240(4):827-839.
[32]Wang D,Sadée W,Quillan J M. Calmodulin binding to G protein-coupling domain of opioid receptors[J]. Journal of Biological Chemistry,1999,274(31):22081-22088.
[33]韩德俊,李振岐,曹莉,等. 大麦抗白粉病基因Mlo的研究进展[J]. 西北植物学报,2003,23(3):496-502.
[34]覃碧,王萌,刘巧玲,等. 木薯Mlo基因家族成员的鉴定及其序列特征分析[J]. 植物生理学报,2013,49(10):1057-1062.
[35]付海辉,辛培尧,许玉兰,等. 几种经济植物UFGT基因的生物信息学分析[J]. 基因组学与应用生物学,2011,30(1):92-102.
[36]郭晓农,柴薇薇,习思羽,等. 三种盐生植物与三种甜土植物HKT1生物信息学比较分析[J]. 分子植物育种,2019,17(16):5263-5275.
[37]覃碧,王萌,刘巧玲,等. 蓖麻基因组Mlo基因家族成员的鉴定及其序列特征分析[J]. 中国农学通报,2014,30(15):268-273.
[38]冯素萍,梁贾春子,李永桩,等. 巴西橡胶树抗病性相关基因研究进展[J]. 安徽农业科学,2015,43(33):191,199.
[39]徐红明,刘红彦,王俊美,等. 小麦Mlo基因的克隆及白粉病菌诱导下的表达模式分析[J]. 麦类作物学报,2010,30(3):401-405.
[40]孙燕飞,李延生,夏宁,等. 小麦TaMlo8基因的克隆及表达分析[J]. 西北农林科技大学学报(自然科学版),2011,39(10):101-110.
[41]何海霞,张宇,王萌,等. 巴西橡胶树(Hevea brasiliensis)HbMlo7基因克隆与表达分析[J]. 植物生理学报,2016,52(6):917-925.
[42]何海霞,张宇,王萌,等. 巴西橡胶树HbMlo1-1基因克隆及其表达[J]. 河南农业大学学报,2016,50(6):739-747.
[43]覃碧,王萌,薛松,等. 巴西橡胶树1个Mlo基因克隆及其序列特征分析[J]. 中国农学通报,2013,29(31):21-26.
[44]张宇,王萌,杨叶,等. 橡胶树白粉菌抗性基因HbMlo12的克隆与表达分析[C]//中国植物病理学会2015年学术年会论文集. 海口,2015:469.
[45]Polanco C,Sáenz de Miera L E,Bett K,et al. A genome-wide identification and comparative analysis of the lentil MLO genes[J]. PLoS One,2018,13(3):e0194945.
[46]Panstruga R. Discovery of novel conserved peptide domains by ortholog comparison within plant multi-protein families[J]. Plant Molecular Biology,2005,59(3):485-500.
[47]Bai Y,Pavan S,Zheng Z,et al. Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function[J]. Molecular Plant-Microbe Interactions,2008,21(1):30-39.
[48]Zheng Z,Nonomura T,Appiano M,et al. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica[J]. PLoS One,2013,8(7):e70723.
[49]邱显钦. 月季抗白粉病基因Mlo的克隆和功能分析[D]. 武汉:华中农业大学,2015.
[50]Pessina S,Pavan S,Catalano D,et al. Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica[J]. BMC Genomics,2014,15:618.
[51]Chen Z Y,Hartmann H A,Wu M J,et al. Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins[J]. Plant Molecular Biology,2006,60(4):583-597.
[52]Winterhagen P,Howard S F,Qiu W P,et al. Transcriptional up-regulation of grapevine MLO genes in response to powdery mildew infection[J]. American Journal of Enology and Viticulture,2008,59(2):159-168.
[53]Elliott C,Müller J,Miklis M,et al. Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein[J]. Biochemical Journal,2005,385:243-254.
[54]Zhou S J,Jing Z,Shi J L. Genome-wide identification,characterization,and expression analysis of the MLO gene family in Cucumis sativus[J]. Genetics and Molecular Research,2013,12(4):6565-6578.
[55]Win K T,Zhang C Y,Lee S. Genome-wide identification and description of MLO family genes in pumpkin (Cucurbita maxima Duch.)[J]. Horticulture,Environment and Biotechnology,2018,59(3):397-410.
[56]徐坚,陈先知,王燕,等. 黄瓜、甜瓜和西瓜MLO基因家族的比较基因组学分析[J]. 核农学报,2014,28(6):1006-1017.
[57]黄京飞,Blundell T L. 蛋白质序列和结构的保守性与其功能的关系[J]. 动物学研究,1999,20(1):22-26.
[58]Jiwan D,Roalson E H,Main D,et al. Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria×ananassa[J]. Transgenic Research,2013,22(6):1119-1131.
[59]Acevedo-Garcia J,Kusch S,Panstruga R. Magical mystery tour:MLO proteins in plant immunity and beyond[J]. New Phytologist,2014,204(2):273-281.
[60]Kusch S,Pesch L,Panstruga R. Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins[J]. Genome Biology and Evolution,2016,8(3):878-895.
[61]Yi J,An S,An G. OsMLO[STBX]12[STBZ],encoding seven transmembrane proteins,is involved with pollen hydration in rice[J]. Plant Reproduction,2014,27(4):169-180.
[62]Jones D S,Yuan J,Smith B E,et al. MILDEW RESISTANCE LOCUS O function in pollen tube reception is linked to its oligomerization and subcellular distribution[J]. Plant Physiology,2017,175(1):172-185.
[63]Davis T C,Jones D S,Dino A J,et al. Arabidopsis thaliana MLO genes are expressed in discrete domains during reproductive development[J]. Plant Reproduction,2017,30(4):185-195.
[64]张宇,何海霞,王萌,等. 巴西橡胶树HbMlo9基因的功能[J]. 吉林农业大学学报,2018,40(2):76-81.
[65]Nguyen V N T,Vo K T X,Park H,et al. A systematic view of the MLO family in rice suggests their novel roles in morphological development,diurnal responses,the light-signaling pathway,and various stress responses[J]. Frontiers in Plant Science,2016,7:1413.
[66]Piffanelli P,Zhou F,Casais C,et al. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli[J]. Plant Physiology,2002,129(3):1076-1085.
[67]Kumar J,Hückelhoven R,Beckhove U,et al. A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana(teleomorph:Cochliobolus sativus)and its toxins[J]. Phytopathology,2001,91(2):127-133.
[68]Peterhnsel C,Freialdenhoven A,Kurth J,et al. Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death[J]. Plant Cell,1997,9(8):1397-1409.
[69]程鸿. 甜瓜APX和Mlo基因的克隆与功能分析[D]. 泰安:山东农业大学,2009.
[70]Pessina S,Angeli D,Martens S,et al. The knock-down of the expression of MdMLO[STBX]19[STBZ] reduces susceptibility to powdery mildew (Podosphaera leucotricha) in apple (Malus domestica)[J]. Plant Biotechnology Journal,2016,14(10):2033-2044.
[71]Acevedo-Garcia J,Spencer D,Thieron H,et al. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach[J]. Plant Biotechnology Journal,2017,15(3):367-378.
[72]Ge X T,Deng W W,Lee Z Z,et al. Tempered mlo broad-spectrum resistance to barley powdery mildew in an Ethiopian landrace[J]. Scientific Reports,2016,6(1):29558.
[73]Zheng Z,Appiano M,Pavan S,et al. Genome-wide study of the tomato SIMLO gene family and its functional characterization in response to the powdery mildew fungus Oidium neolycopersici[J]. Frontiers in Plant Science,2016,7:380.
[74]Blume B,Nürnberger T,Nass S,et al. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley[J]. Plant Cell,2000,12(8):1425-1440.
[75]邵伯飞. TaMlo3基因克隆与功能分析[D]. 杭州:浙江大学,2002.
[76]赵淑芳,胡东维,程方民. 大麦与白粉病菌互作中钙调素的细胞化学定位[J]. 细胞生物学杂志,2004,26(6):640-644.
[77]陈利刚. 大麦Mlo基因功能的细胞生物学研究[D]. 杭州:浙江大学,2006.
[78]Humphry M,Bednarek P,Kemmerling B,et al. A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(50):21896.
[79]Jarosch B,Kogel K H,Schaffrath U. The ambivalence of the barley Mlo locus:mutations conferring resistance against powdery mildew(Blumeria graminis f.sp.hordei)enhance susceptibility to the rice blast fungus Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions,1999,12(6):508-514.
[80]Collins N C,Thordal-Christensen H,Lipka V,et al. SNARE-protein-mediated disease resistance at the plant cell wall[J]. Nature,2003,425(6961):973-977.
[81]Kwon C,Neu C,Pajonk S,et al. Co-option of a default secretory pathway for plant immune responses[J]. Nature,2008,451(7180):835-840.
[82]Assaad F F,Qiu J L,Youngs H,et al. The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae[J]. Molecular Biology of the Cell,2004,15(11):5118-5129.
[83]Bednarek P,Pislewska-Bednarek M,Svatos A,et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense[J]. Science,2009,323(5910):101-106.
[84]Stein M,Dittgen J,Sánchez-Rodríguez C,et al. Arabidopsis PEN3/PDR8,an ATP binding cassette transporter,contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration[J]. Plant Cell,2006,18(3):731-746.
[85]Bushnell W R,Zeyen R J. Light and electron microscope studies of cytoplasmic aggregates formed in barley in response to Erysiphe graminisn[J]. Canadian Journal of Botany,1976,54(14):1647-1655.
[86]Bushnell W R,Bergquist S E. Aggregation of host cytoplasm and the formation of papillae and haustoria in powdery mildew of barley[J]. Phytopathology,1975,65(3):310-318.
[87]Kita N,Toyoda H,Shishiyama J. Histochemical reactions of papilla and cytoplasmic aggregate in epidermal cells of barley leaves infected by Erysiphe graminis hordei[J]. Japanese Journal of Phytopathology,1980,46(2):263-265.
[88]Russo V M,Bushnell W R. Responses of barley cells to puncture by microneedles and to attempted penetration by Erysiphe graminis f. sp. hordei[J]. Canadian Journal of Botany,1989,67(10):2912-2921.
[89]Kunoh H,Aist J R,Hayashimoto A. The occurrence of cytoplasmic aggregates induced by Erysiphe pisi in barley coleoptile cells before the host cell walls are penetrated[J]. Physiological Plant Pathology,1985,26(2):199-207.
[90]Kunoh H,Tsuzuxi T,Ishizaki H. Cytological studies of early stages of powdery mildew in barley and wheat.Ⅳ.Direct ingress from superficial primary germ tubes and appressoria of Erysiphe graminis hordei on barley leavest[J]. Physiological Plant Pathology,1978,13(3):327-333.
[91]Zeyen R J,Bushnel W R. Papilla response of barley epidermal cells caused by Erysiphe graminis:rate and method of deposition determined by microcinematography and transmission electron [JP3]microscopy[J]. Canadian Journal of Botany,1979,57(8):898-913.
[92]Aist J R,Israel H W. Papilla formation:timing and significance during penetration of barley coleoptiles by Erysiphe graminis hordei[J]. Phytopathology,1977,67(4):455-461.
[93]Takahashi K,Aist J R,Israel H W. Distribution of hydrolytic enzymes at barley powdery mildew encounter sites:implications for resistance associated with papilla formation in a compatible system[J]. Physiological Plant Pathology,1985,27(2):167-184.
[94]Voigt C A. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae[J]. Frontiers in Plant Science,2014,5:168.
[95]Hückelhoven R,Fodor J,Preis C,et al. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic [JP3]acid accumulation[J]. Plant Physiology,1999,119(4):1251-1260.
[96]Aist J R,Gold R E,Bayles C J,et al. Evidence that molecular components of papillae may be involved in mlo resistance to barley mildew[J]. Physiological & Molecular Plant Pathology,1988,33(1):17-32.
[97]Kunoh H,Aist J R,Israel H W. Elemental composition of barley coleoptile papillae in relation to their ability to prevent penetration by Erysiphe graminis[J]. Physiological & Molecular Plant Pathology,1986,29(1):69-78.
[98]赵淑芳,胡东维. 白粉病菌侵染诱导的大麦叶肉细胞变化的超微结构与细胞化学[J]. 植物病理学报,2003,33(5):444-448.
[99]Koga H,Bushnell W R,Zeyen R J. Specificity of cell type and timing of events associated with papilla formation and the hypersensitive reaction in leaves of Hordeum vulgare attacked by Erysiphe graminis f.sp.hordei[J]. Canadian Journal of Botany,2011,68(11):2344-2352.
[100]Chamnongpol S,Willekens H,Moeder W,et al. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(10):5818-5823.
[101]Levine A,Tenhaken R,Dixon R,et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J]. Cell,1994,79(4):583-593.
[102]闫亚杰,耿广琴,李涛. 月季感染白粉病后叶片抗氧化酶活性与MDA含量的变化[J]. 甘肃科学学报,2010,22(3):68-71.
[1]霍恒志,糜林,李金凤,等.草莓无害化栽培主要病害防治技术探讨[J].江苏农业科学,2013,41(04):115.
[2]刘会宁,张静.葡萄抗白粉病与相关生理生化指标的关系[J].江苏农业科学,2014,42(11):156.
Liu Huining,et al().Relationship between resistance to Uncinula necator and a few physiological and biochemical indices of grape[J].Jiangsu Agricultural Sciences,2014,42(1):156.
[3]朱丽梅,崔群香,蔡元琴,等.不同茄子品种田间病害调查及其抗病性鉴定[J].江苏农业科学,2013,41(06):96.
Zhu Limei,et al.Field investigation of disease and disease resistance identification of different eggplant varieties[J].Jiangsu Agricultural Sciences,2013,41(1):96.
[4]朱桂清,宋晶晶,曹远银,等.2009—2010年东北春麦区小麦白粉病菌生理小种动态分析[J].江苏农业科学,2013,41(06):99.
Zhu Guiqing,et al.Physiological race dynamics analysis of Blumeria graminis in northeastern spring wheat region of China during 2009 to 2010[J].Jiangsu Agricultural Sciences,2013,41(1):99.
[5]付瑞敏,韩鸿鹏,张丽琴,等.葡萄霜霉病和白粉病拮抗菌的分离、鉴定和He-Ne 激光诱变[J].江苏农业科学,2013,41(08):122.
Fu Ruimin,et al.Isolation and identification of antagonistic bacteria against grape downy mildew and powdery mildew,and its mutation under He-Ne laser irradiation[J].Jiangsu Agricultural Sciences,2013,41(1):122.
[6]艾子凌,高鹏,杜黎黎,等.利用CAPS初步定位甜瓜MR-1白粉病抗性基因[J].江苏农业科学,2016,44(06):66.
Ai Ziling,et al.Location of powdery mildew resistant gene using CAPS makers in melon MR-1[J].Jiangsu Agricultural Sciences,2016,44(1):66.
[7]熊仕俊,黄芳,李文贞,等.贵州省主要小麦品种对小麦白粉病的抗性[J].江苏农业科学,2014,42(04):93.
Xiong Shijun,et al.Disease resistance of main wheat cultivars to powdery mildew in Guizhou Province[J].Jiangsu Agricultural Sciences,2014,42(1):93.
[8]李小霞,肖仲久.烟草白粉菌对烟草重要防御酶活性的影响[J].江苏农业科学,2015,43(01):148.
Li Xiaoxia,et al.Effects of tobacco powdery mildew pathogenic bacteria on important defense enzyme activity in tobacco[J].Jiangsu Agricultural Sciences,2015,43(1):148.
[9]向贵生,张真建,王其刚,等.月季白粉病及其抗性研究进展[J].江苏农业科学,2017,45(10):9.
Xiang Guisheng,et al.Research progress of Chinese rose powdery mildew and its resistance[J].Jiangsu Agricultural Sciences,2017,45(1):9.
[10]严凯,罗泽丽,胡芳丽,等.刺梨白粉病的发生规律及生物学特性[J].江苏农业科学,2017,45(21):119.
Yan Kai,et al.Occurrence and biological characteristics of Sphaerotheca pannosa (Wallr.) Lev. in Rosa roxburghii[J].Jiangsu Agricultural Sciences,2017,45(1):119.
[11]李可,金辉,陈卓,等.中国南瓜MLO基因的鉴定与表达分析[J].江苏农业科学,2023,51(6):32.
Li Ke,et al.Identification and description analysis of MLO family genes in pumpkin (Cucurbita moschata)[J].Jiangsu Agricultural Sciences,2023,51(1):32.