|本期目录/Table of Contents|

[1]许达为,鲍恩财,邹佳宁,等.植物CDF转录因子功能研究进展[J].江苏农业科学,2020,48(14):12-17.
 Xu Dawei,et al.Research progress on function of plant CDF transcription factors[J].Jiangsu Agricultural Sciences,2020,48(14):12-17.
点击复制

植物CDF转录因子功能研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第14期
页码:
12-17
栏目:
专论与综述
出版日期:
2020-07-20

文章信息/Info

Title:
Research progress on function of plant CDF transcription factors
作者:
许达为12 鲍恩财1 邹佳宁2 曹凯1
1.江苏省农业科学院/农业农村部长江中下游设施农业工程重点实验室,江苏南京 210014;
2.西北农林科技大学园艺学院/农业农村部西北设施园艺工程重点实验室,陕西杨凌 712100
Author(s):
Xu Daweiet al
关键词:
CDF转录因子开花光合作用产量非生物胁迫
Keywords:
-
分类号:
S184
DOI:
-
文献标志码:
A
摘要:
CDF(cycling dof factors)蛋白是植物DOF家族中一类特有的转录因子,在植物生长发育中扮演重要角色。CDF蛋白在N-末端有一个由52个氨基酸残基组成的高度保守的C2-C2单锌指结构域,能够特异性地识别植物启动子序列中的AAAG/CTTT作用元件;在C-末端包含有21、22和33个氨基酸组成的3个保守序列,这是与其他蛋白发生相互作用的关键位点。研究发现,CDF基因具有生物钟节律且表达量受光周期调控,其编码的蛋白在调控植物生长发育和响应逆境胁迫方面起着重要作用,就CDF转录因子的序列特点和开花、产量以及响应非生物胁迫方面的功能进行了综述。
Abstract:
-

参考文献/References:

[1]Riechmann J L,Heard J,Martin G,et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science,2000,290(5499):2105-2110.
[2]Lijavetzky D,Carbonero P,Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families[J]. BMC Evolutionary Biology,2003,3(1):17.
[3]Hernando-Amado S,Gonzalez-Calle V,Carbonero P,et al. The family of DOF transcription factors in Brachypodium distachyon:phylogenetic comparison with rice and barley DOFs and expression profiling[J]. BMC Plant Biology,2012,12(1):202.
[4]Imaizumi T,Schultz T F,Harmon F G,et al. FKF1F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis[J]. Science,2005,309(5732):293-297.
[5]Yanagisawa S,Schmidt R J. Diversity and similarity among recognition sequences of Dof transcription factors[J]. Plant Journal,1999,17(2):209-214.
[6]Yanagisawa S. Dof domain proteins:plant-specific transcription factors associated with diverse phenomena unique to plants[J]. Plant and Cell Physiology,2004,45(4):386-391.
[7]Kim H S,Kim S J,Abbasi N,et al. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting revoluta transcription in Arabidopsis[J]. Plant Journal,2010,64(3):524-535.
[8]Wei P C,Tan F,Gao X Q,et al. Overexpression of AtDOF4.7,an Arabidopsis DOF family transcription factor,induces floral organ abscission deficiency in Arabidopsis[J]. Plant Physiology,2010,153(3):1031-1045.
[9]Yanagisawa S. A novel dna-binding domain that may form a single zinc-finger motif[J]. Nucleic Acids Research,1995,23(17):3403-3410.
[10]Sawa M,Nusinow D A,Kay S A,et al. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis[J]. Science,2007,318(5848):261-265.
[11]Yang J,Yang M F,Zhang W P,et al. A putative flowering-time-related Dof transcription factor gene,JcDof3,is controlled by the circadian clock in Jatropha curcas[J]. Plant Science,2011,181(6):667-674.
[12]Kloosterman B,Abelenda J A,Gomez M D C,et al. Naturally occurring allele diversity allows potato cultivation in northern latitudes[J]. Nature,2013,495(7440):246-250.
[13]Fornara F,Panigrahi K C S,Gissot L,et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response[J]. Dev Cell,2009,17(1):75-86.
[14]Renau-Morata B,Molina R V,Carrillo L,et al. Ectopic expression of CDF3 genes in tomato enhances biomass production and yield under salinity stress conditions[J]. Frontiers in Plant Science,2017,8:660.
[15]Corrales A R,Carrillo L,Lasierra P,et al. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis[J]. Plant Cell Environ,2017,40(5):748-764.
[16]Kobayashi Y,Kaya H,Goto K,et al. A pair of related genes with antagonistic roles in mediating flowering signals[J]. Science,1999,286(5446):1960-1962.
[17]Valverde F,Mouradov A,Soppe W,et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering[J]. Science,2004,303(5660):1003-1006.
[18]Song Y H,Smith R W,To B J,et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering[J]. Science,2012,336(6084):1045-1049.
[19]Nakamichi N,Kita M,Niinuma K,et al. Arabidopsis clock-associated pseudo-response regulators PRR9,PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway[J]. Plant and Cell Physiology,2007,48(6):822-832.
[20]Ito S,Niwa Y,Nakamichi N,et al. Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana[J]. Plant and Cell Physiology,2008,49(2):201-213.
[21]Nakamichi N,Kiba T,Henriques R,et al. PSEUDO-RESPONSE REGULATORS 9,7,and 5 are transcriptional repressors in the Arabidopsis circadian clock[J]. Plant Cell,2010,22(3):594-605.
[22]Gendron J M,Pruneda-Paz J L,Doherty C J,et al. Arabidopsis circadian clock protein,TOC1,is a DNA-binding transcription factor[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(8):3167-3172.
[23]Huang W,Perez-Garcia P,Pokhilko A,et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator[J]. Science,2012,336(6077):75-79.
[24]Rosas U,Mei Y,Xie Q G,et al. Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS[J]. Nature Communications,2014,5(1):3651.
[25]Nakamichi N,Kiba T,Kamioka M,et al. Transcriptional repressor PRR5 directly regulates clock-output pathways[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(42):17123-17128.
[26]Kinet J M. Effect of light conditions on the development of the inflorescence in tomato[J]. Scientia Horticulturae,1977,6(1):15-26.
[27]Uzun S. The quantitative effects of temperature and light on the number of leaves preceding the first fruiting inflorescence on the stem of tomato (Lycopersicon esculentum,Mill.) and aubergine (Solanum melongena L.)[J]. Scientia Horticulturae,2006,109(2):142-146.
[28]Dieleman J A,Heuvelink E. Factors affecting the number of leaves preceding the 1st inflorescence in the tomato[J]. Journal of Horticultural Science,1992,67(1):1-10.
[29]Corrales A R,Nebauer S G,Carrillo L,et al. Characterization of tomato cycling dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses[J]. J Exp Bot,2014,65(4):995-1012.
[30]Iwamoto M,Higo K,Takano M. Circadian clock- and phytochrome-regulated Dof-like gene,Rdd1,is associated with grain size in rice[J]. Plant Cell Environ,2009,32(5):592-603.
[31]Li D J,Yang C H,Li X B,et al. Functional characterization of rice OsDof12[J]. Planta,2009,229(6):1159-1169.
[32]Wu Q,Liu X,Yin D D,et al. Constitutive expression of OsDof4,encoding a C2-C2 zinc finger transcription factor,confesses its distinct flowering effects under long- and short-day photoperiods in rice (Oryza sativa L.)[J]. BMC Plant Biology,2017,17(1):166.
[33]Xu J Y,Dai H B. Brassica napus cycling dof factor1 (BnCDF1) is involved in flowering time and freezing tolerance[J]. Plant Growth Regulation,2016,80(3):315-322.
[34]Ishida T,Sugiyama T,Tabei N,et al. Diurnal expression of CONSTANS-like genes is independent of the function of cycling DOF factor (CDF)-like transcriptional repressors in Physcomitrella patens[J]. Plant Biotechnology,2014,31(4):293-U125.
[35]Yang J,Yang M F,Wang D,et al. JcDof1,a Dof transcription factor gene,is associated with the light-mediated circadian clock in Jatropha curcas[J]. Physiologia Plantarum,2010,139(3):324-334.
[36]Paul M J,Foyer C H. Sink regulation of photosynthesis[J]. J Exp Bot,2001,52(360):1383-1400.
[37]Saibo N J M,Lourenco T,Oliveira M M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses[J]. Annals of Botany,2009,103(4):609-623.
[38]Kordel B,Kutschera U. Effects of gibberellin on cellulose biosynthesis and membrane-associated sucrose synthase activity in pea internodes[J]. Journal of Plant Physiology,2000,156(4):570-573.
[39]Mariotti L,Picciarelli P,Lombardi L,et al. Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid,cytokinin,and bioactive gibberellin contents[J]. Journal of Plant Growth Regulation,2011,30(4):405-415.
[40]Ariizumi T,Shinozaki Y,Ezura H. Genes that influence yield in tomato[J]. Breeding Sci,2013,63(1):3-13.
[41]刘娟娟,汪惠丽. 植物中脱落酸对非生物胁迫的耐受性研究进展[J]. 安徽农业科学,2017,45(16):11-12,15.
[42]赵赫,陈受宜,张劲松. 乙烯信号转导与植物非生物胁迫反应调控研究进展[J]. 生物技术通报,2016,32(10):1-10.
[43]忽雪琦,李东阳,严加坤,等. 干旱胁迫下外源茉莉酸甲酯对玉米幼苗根系吸水的影响[J]. 植物生理学报,2018,54(6):991-998.
[44]刘燕敏,周海燕,王康,等. 植物对非生物胁迫的响应机制研究[J]. 安徽农业科学,2018,46(16):35-37,62.
[45]牛亚利,赵芊,张肖晗,等. 赤霉素信号在非生物胁迫中的作用及其调控机制研究进展[J]. 生物技术通报,2015,31(10):31-37.
[46]田晓艳,刘延吉,郭迎春. 盐胁迫对NHC牧草Na+、K+、Pro、可溶性糖及可溶性蛋白的影响[J]. 草业科学,2008,25(10):34-38.
[47]薛腾笑,任子蓓,任士福. NaCl胁迫对美国金钟连翘生理特性的影响[J]. 江苏农业科学,2018,46(11):104-108.
[48]尤超,沈虹,张营营,等. 油桃生理特性对水分胁迫的响应[J]. 江苏农业科学,2018,46(16):98-101.
[49]李学孚,倪智敏,吴月燕,等. 盐胁迫对‘鄞红’葡萄光合特性及叶片细胞结构的影响[J]. 生态学报,2015,35(13):4436-4444.
[50]韩光明,蓝家样,陈全求,等. 高温对棉花生殖生长及其生理生化过程的影响[J]. 棉花科学,2018,40(3):12-17.
[51]黄伟超,范宇博,王泳超. 低温胁迫对玉米幼苗抗氧化系统及渗透调节物质的影响[J]. 中国农学通报,2018,34(24):6-12.

相似文献/References:

[1]刘晓青,苏家乐,李畅,等.多效唑喷雾对盆栽杜鹃株型控制及抗性的效应[J].江苏农业科学,2014,42(11):192.
 Liu Xiaoqing,et al(9).Effect of paclobutrazol spray on plant type control and stress resistance of potted rhododendron[J].Jiangsu Agricultural Sciences,2014,42(14):192.
[2]吴国平,王建华,王丽娟,等.幼苗春化特性对结球甘蓝开花及繁种的影响[J].江苏农业科学,2013,41(06):121.
 Wu Guoping,et al.Effect of vernalization on flower and breeding of Brassica oleracea var. capitata[J].Jiangsu Agricultural Sciences,2013,41(14):121.
[3]杨美燕,杨秀珍.营养液浓度和施肥频率对无土栽培一串红生长及开花的影响[J].江苏农业科学,2013,41(08):181.
 Yang Meiyan,et al.Effects of nutrient solution concentration and fertilization frequency on growth and bloom of Salvia splendens under the soilless culture[J].Jiangsu Agricultural Sciences,2013,41(14):181.
[4]陆琳,余娜,杨明珊,等.云南地区薰衣草引种栽培技术[J].江苏农业科学,2015,43(04):195.
 Lu Lin,et al.Introduction and cultivation techniques of lavender in Yunnan area[J].Jiangsu Agricultural Sciences,2015,43(14):195.
[5]潘静霞.不同水分处理对蝴蝶兰开花的影响[J].江苏农业科学,2015,43(03):159.
 Pan Jingxia.Effect of different water management on flowering of Phalaenopsis[J].Jiangsu Agricultural Sciences,2015,43(14):159.
[6]刘哲,许园园,娄丽娜,等.植物抗逆和开花相关miRNA研究进展及在丝瓜上的应用[J].江苏农业科学,2018,46(16):6.
 Liu Zhe,et al.Research progress of plant stress resistance-related and flowering-related miRNA and its application in luffa[J].Jiangsu Agricultural Sciences,2018,46(14):6.
[7]韩金龙,童晓利,曹荣祥,等.避雨栽培对梨树开花及成花基因表达的影响[J].江苏农业科学,2019,47(24):124.
 Han Jinlong,et al.Influences of rain-shelter cultivation on flowering of pear trees[J].Jiangsu Agricultural Sciences,2019,47(14):124.
[8]侯梦媛,姜琳琳.寡照胁迫对设施草莓营养生长及生殖生长的影响[J].江苏农业科学,2021,49(13):125.
 Hou Mengyuan,et al.Effects of low-light stress on nutritious and reproductive growth of greenhouse strawberry[J].Jiangsu Agricultural Sciences,2021,49(14):125.
[9]曲晓慧,张宁宁,刘晨,等.不同低温与肥水处理对蝴蝶兰生长及开花的影响[J].江苏农业科学,2022,50(12):168.
 Qu Xiaohui,et al.Effects of different low temperature and fertilizer-water treatments on growth and flowering of Phalaenopsis aphrodite[J].Jiangsu Agricultural Sciences,2022,50(14):168.
[10]刘陈玮,徐仁超,卞晓春,等.低温和赤霉素对蚕豆开花、内源激素、基因表达的调控[J].江苏农业科学,2024,52(24):105.
 Liu Chenwei,et al.Regulating effects of low temperature and gibberellin on flowering,endogenous hormones,and gene expression of broad bean[J].Jiangsu Agricultural Sciences,2024,52(14):105.

备注/Memo

备注/Memo:
收稿日期:2019-07-23
基金项目:国家自然科学基金青年科学基金(编号:31801903);江苏省农业科学院基本业务费(编号:ZX195004)。
作者简介:许达为(1994—),男,山西太原人,硕士,主要从事设施植物生理生态研究。E-mail:13772050385@163.com。
通信作者:曹凯,博士,助理研究员,主要从事设施植物生理生态研究。E-mail:243706299@qq.com。
更新日期/Last Update: 2020-07-20