[1]Grubb C D,Abel S. Glucosinolate metabolism and its control[J]. Trends in Plant Science,2006,11(2):89-100.
[2]Klopsch R,Witzel K,Brner A,et al. Metabolic profiling of glucosinolates and their hydrolysis products in a germplasm collection of Brassica rapa turnips[J]. Food Research International,2017,100(3):392-403.
[3]Bende J,Celenza J L. Indolic glucosinolates at the crossroads of tryptophan metabolism[J]. Phytochemistry Reviews,2009,8(1):25-37.
[4]Ishida M,Hara M,Fukino N,et al. Glucosinolate metabolism,functionality and breeding for the improvement of Brassicaceae vegetables[J]. Breeding Science,2014,64(1):48-59.
[5]Kliebenstein D J,Kroymann J,Brown P,et al. Genetic control of natural variation in Arabidopsis glucosinolate accumulation[J]. Plant Physiology,2001,126(2):811-825.
[6]Kim J H,Jander G. Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a repellent indole glucosinolate[J]. The Plant Journal,2007,49(6):1008-1019.
[7]Bednarek P,Pislewska-Bednarek M,Svatos A,et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense[J]. Science,2009,323(5910):101-106.
[8]Clay N K,Adio A M,Denoux C,et al.Glucosinolate metabolism required for an Arabidopsis innate immune response[J]. Science,2009,323(5910):95-101.
[9]Murillo G,Mehta R G. Cruciferous vegetables and cancer prevention[J]. Nutrition & Cancer,2001,41(1/2):17-28.
[10]Mithen R F,Dekker M,Verkerk R,et al.Review:the nutritional significance,biosynthesis and bioavailability of glucosinolates in human food[J]. Journal of the Science of Food & Agriculture,2000,80(7):967-984.
[11]Fahey J W,Zhang Y,Talalay P,et al. Broccoli sprouts:an exceptionally rich source of inducers of enzymes that protect against chemical[J]. PNAS,1997,94(19):10367-10372.
[12]Chen I,Mc Dougal A,Wang F,et al. Aryl hydrocarbon receptor rmediated antiestrogenic and antitumorigenic activity of diindolylmethane[J]. Carcinogenesis,1998,19:1631-1639.
[13]Kliebenstein D J,Gershenzon J,Mitchell-Olds T,et al.Comparative quantitative trait loci mapping of aliphatic,indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds[J]. Genetics,2001,159(1):359-370.
[14]Brown P D,Tokuhisa J G,Reichelt M,et al.Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana[J]. Phytochemistry,2003,62(3):471-481.
[15]李一蒙,陈亚州,阎秀峰. 植物中的吲哚族芥子油苷与生长素代谢途径的关系[J]. 植物生理学报,2009,45(2):195-201.
[16]Mikkelsen M D,Naur P,Halkier B A,et al. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis[J]. Plant Journal,2004,37(5):770-777.
[17]Bak S,Feyereisen R.The involvement of two P450 enzymes CYP83B1 and CYP83A1 in auxin homeostasis and glucosinolate biosynthesis[J]. Plant Physiology,2001,127(1):108-118.
[18]Petersen B L,Andréasson E,Bak S,et al. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate[J]. Planta,2001,212(4):612-618.
[19]Snderby I E,M Burow,Rowe H C,et al. A complex interplay of three R2R3-MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis[J]. Plant Physiology,2010,153(1):348-368.
[20]Bender J,Fink G R.A Myb homologue,ATR1,activates tryptophan gene expression in Arabidopsis[J]. PNAS,1998,95(10):5655-5660.
[21]Celenza J L,Quiel J A,Smolen G A,et al. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis[J]. Plant Physiology,2005,137(1):253-262.
[22]Gigolashvili T,Berger B,Mock H,et al.The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Plant Journal,2007,50(5):886-901.
[23]Hai D U,Ran F,Liu J,et al. Genome-wide expression analysis of glucosinolate biosynthetic genes in Arabidopsis across diverse tissues and stresses induction[J]. Scientia Acricultura Sinica,2016,49(15):2879-2897.
[24]Schweizer F,Fernándezcalvo P,Zander M,et al. Arabidopsis basic helix-loop-helix transcription factors MYC2,MYC3,and MYC4 regulate glucosinolate biosynthesis,insect performance,and feeding behavior[J]. Plant Cell,2013,25(8):3117-3132.
[25]Skirycz A,Reichelt M,Burow M,et al.DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis[J]. Plant Journal,2006,47(1):10-24.
[26]Levy M,Wang Q,Kaspi R,et al. Arabidopsis IQD1,a novel calmodulin-binding nuclear protein,stimulates glucosinolate accumulation and plant defense[J]. Plant Journal,2005,43(1):79-96.
[27]Hull A K,Vij R,Celenza J L,et al. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis[J]. PNAS,2000,97(5):2379-2384.
[28]Zhao Y,Hull A K,Gupta N R,et al. Trp-dependent auxin biosynthesis in Arabidopsis:involvement of cytochrome P450s CYP79B2 and CYP79B3[J]. Genes Dev,2002,16(23):3100-3112.
[29]Mikkelsen M D,Hansen C H,Wittstock U,et al. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime,a precursor of indole glucosinolates and indole-3-acetic acid[J]. Journal of Biological Chemistry,2000,275(43):33712-33717.
[30]Mikkelsen M D,Halkier B A. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways[J]. Plant Physiology,2003,131(1):298-308.
[31]Bandurski R S,Cohen J D,Slovin J P,et al. The plant hormones:auxin biosynthesis and metabolism[M]. Berlin,Heidelberg:Springer-Verlag,1995:39-65.
[32]Bartel B,Leclere S,Magidin M,et al. Inputs to the active indole-3-acetic acid pool:de novo synthesis,conjugate hydrolysis,and indole-3-butyric acid β-oxidation[J]. Journal of Plant Growth Regulation,2001,20(3):198-216.
[33]Normanly J,Bartelt B. Redundancy as a way of life:IAA metabolism[J]. Current Opinion in Plant Biology,1999,2(3):207-213.
[34]Mashiguchi K,Tanaka K,Sakai T,et al. The main auxin biosynthesis pathway in Arabidopsis[J]. PNAS,2011,108(45):18512-18517.
[35]Quittenden L J,Davies N W,Smith J A,et al. Auxin biosynthesis in pea:characterization of the tryptamine pathway[J]. Plant Physiology,2009,151(3):1130-1138.
[36]Tam Y Y,Normanly J. Overexpression of a bacterial indole-3-acetyl-l-aspartic acid hydrolase in Arabidopsis thaliana[J]. Physiologia Plantarum,2010,115(4):513-522.
[37]Nemoto K,Hara M,Suzuki M,et al. The NtAMI1 gene functions in cell division oftobacco BY-2 cells in the presence of indole-3-acetamide[J]. Febs Letters,2009,583(2):487-492.
[38]Pollmann S,Düchting P,Weiler E W. Tryptophan-dependent indole-3-acetic acid biosynthesis by‘IAA-synthase’ proceeds via indole-3-acetamide[J]. Phytochemistry,2009,70(4):523-531.
[39]Tao Y,Ferrer J L,Ljung K,et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants[J]. Cell,2008,133(1):164-176.
[40]Won C,Shen X,Mashiguchi K,et al. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis[J]. PNAS,2011,108(45):18518-18523.
[41]Zhao Y D. Auxin biosynthesis:a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants[J]. Molecular Plant,2012,5(2):334-338.
[42]Glawischnig E,Hansen B G,Olsen C E,et al. Camalexin is synthesized from indole-3-acetaldoxime,a key branching point between primary and secondary metabolism in Arabidopsis[J]. PNAS,2004,101(21):8245-8250.
[43]Wittstock U,Halkier B A. Glucosinolate research in the Arabidopsis era[J]. Trends in Plant Science,2002,7(6):263-270.
[44]陈凌云,余芳洁,陈君杰,等. 植物硫代葡萄糖苷二次修饰及调控的研究进展[J]. 江苏农业科学,2019,47(4):22-29.
[45]Bttcher C,Westphal L,Schmotz C,et al. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana[J]. Plant Cell,2009,21(6):1830-1845.
[46]Barlier I,Kowalczyk M,Marchant A,et al. The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1,a modulator of auxin homeostasis[J]. PNAS,2000,97(26):14819-14824.
[47]张海峰,袁晶,汪俏梅. 植物激素与芥子油苷在生物合成上的相互作用[J]. 细胞生物学杂志,2005,27(4):423-426.
[48]王家利,刘冬成,郭小丽,等. 生长素合成途径的研究进展[J]. 植物学报,2012,47(3):292-301.
[49]阮颖,周朴华,刘春林. 硫代葡萄糖苷合成核心途径与植物生长素微调[J]. 生命科学研究,2006(增刊3):25-29.