|本期目录/Table of Contents|

[1]宋有金,吴超.高温影响水稻颖花育性的生理机制综述[J].江苏农业科学,2020,48(16):41-48.
 Song Youjin,et al.Physiological mechanism of high temperature affecting fertility of rice spikelets: a review[J].Jiangsu Agricultural Sciences,2020,48(16):41-48.
点击复制

高温影响水稻颖花育性的生理机制综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第16期
页码:
41-48
栏目:
专论与综述
出版日期:
2020-08-20

文章信息/Info

Title:
Physiological mechanism of high temperature affecting fertility of rice spikelets: a review
作者:
宋有金1 吴超2
1.南京农业大学农学院/农业部作物生理生态与生产管理重点实验室,江苏南京 210095;2.广西壮族自治区中国科学院广西植物研究所/广西植物功能物质研究与利用重点实验室,广西桂林 541006
Author(s):
Song Youjinet al
关键词:
水稻高温颖花育性花粉雌蕊生理机制
Keywords:
-
分类号:
S511.01
DOI:
-
文献标志码:
A
摘要:
综述了生殖生长期高温诱导水稻颖花不育的生理机制。高温阻碍水稻授粉、受精过程,导致严重颖花不育,不同生殖生长期高温影响颖花育性的生理机制不同,幼穗分化期高温阻碍雌、雄性花器官生长发育,引起花器结构、形态异常,限制花后授粉受精,增加水稻颖花不育率;抽穗扬花期高温导致花器生理活动紊乱,抑制花药开裂、花粉萌发和花粉管伸长,直接阻碍授粉受精,增加空粒率。花期高温对水稻颖花育性的影响最严重,针对该时期高温可通过遗传改良、栽培管理、化学调控、辅助授粉等缓解高温对颖花育性的伤害。未来在不同生育时期高温对水稻颖花育性影响差异的生理机制、高温与其他环境因子互作对颖花育性的影响及高温下颖花发育的联动性等方面还须要深入研究。
Abstract:
-

参考文献/References:

[1]王才林,仲维功. 高温对水稻结实率的影响及其防御对策[J]. 江苏农业科学,2004(1):15-18.
[2]石春林,金之庆,汤日圣,等. 水稻颖花结实率对减数分裂期和开花期高温的响应差异[J]. 江苏农业学报,2010,26(6):1139-1142.
[3]Pachauri R,Reisinger A. Climate change 2014:synthesis report. contribution of working groups Ⅰ,Ⅱ and Ⅲ to the fifth assessment report of the intergovernmental panel on climate change[J]. Journal of Romance Studies,2014,4(2):85-88.
[4]Shen X J,Liu B H,Lu X G,et al. Spatial and temporal changes in daily temperature extremes in China during 1960—2011[J]. Theoretical Applied Climatology,2016,130:1-11.
[5]Aggarwal P K,Pathak D S,Kumar S N. Global climate change and indian agriculture:a review of adaptation strategies[C]//Brainstorming Workshop on Climate Change,Soil Quality and Food Security,Proceeding and Recommendations. Indian Agricultural Research Institute,2009.
[6]Peng S,Huang J,Sheehy J E,et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences,2004,101(27):9971-9975.
[7]谭诗琪,申双和. 长江中下游地区近32年水稻高温热害分布规律[J]. 江苏农业科学,2016,44(8):97-101.
[8]Hedhly A,Hormaza J I. Global warming and sexual plant reproduction[J]. Trends in Plant Science,2008,14(1):30-36.
[9]王伟平,杨塞,肖层林. 幼穗分化后期异常温度对蜀恢527育性的影响及其生理机制[J]. 杂交水稻,2005,20(6):60-63.
[10]Cao Y Y,Hua D,Yang L N,et al. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism[J]. Acta Agronomica Sinica,2008,34(12):2134-2142.
[11]Prasad P V,Boote K J,Jr L A,et al. Species,ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress[J]. Field Crops Research,2006,95(2):398-411.
[12]Kumar N,Jeena N,Singh H. Elevated temperature modulates rice pollen structure:a study from foothill of Himalayan agro-ecosystem in India[J]. Biotech,2019,9(5):175-178.
[13]Endo M,Tsuchiya T,Hamada K,et al. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development[J]. Plant & Cell Physiology,2009,50(11):1911-1922.
[14]Shi W,Muthurajan R,Rahman H,et al. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality[J]. New Phytologist,2013,197(3):825-837.
[15]Jain M,Prasad P V,Boote K J,et al. Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum(Sorghum bicolor L.Moench)[J]. Planta,2007,227(1):67-79.
[16]Shi W,Xiao G,Struik P C,et al. Quantifying source-sink relationships of rice under high night-time temperature combined with two nitrogen levels[J]. Field Crops Research,2016,202:36-46.
[17]Li X,Lawas L M,Malo R,et al. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress[J]. Plant,Cell & Environment,2015,38(10):2171-2192.
[18]Arshad M S,Farooq M,Asch F,et al. Thermal stress impacts reproductive development and grain yield in rice[J]. Plant Physiology & Biochemistry,2017,115:57-72.
[19]李国辉,张国,崔克辉. 水稻穗颈维管束特征及其与茎鞘同化物转运和产量的关系[J]. 植物生理学报,2019,55(3):329-341.
[20]张桂莲,陈立云,张顺堂,等. 高温胁迫对水稻花粉粒性状及花药显微结构的影响[J]. 生态学报,2008,28(3):1089-1097.
[21]卢永根,冯九焕,刘向东,等. 水稻(Oryza sativa L.)花粉及花药壁发育的超微结构研究[J]. 中国水稻科学,2002,16(1):30-38.
[22]Yang Z F,Liu L P,Sun L,et al. OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice[J]. Plant Molecular Biology,2019,99(1/2):175-191.
[23]Feng B H,Zhang C X,Chen T T,et al. Salicylic acid reverses pollen abortion of rice caused by heat stress[J]. BMC Plant Biology,2018,18(1):245-260.
[24]邓运,田小海,吴晨阳,等. 热害胁迫条件下水稻花药发育异常的早期特征[J]. 中国生态农业学报,2010,18(2):377-383.
[25]Zhao Q,Zhou L J,Liu J C,et al. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility[J]. Plant Cell Reports,2018,37(5):741-757.
[26]张桂莲,张顺堂,肖浪涛,等. 花期高温胁迫对水稻花药生理特性及花粉性状的影响[J]. 作物学报,2013,39(1):177-183.
[27]Kumar N,Shankhdhar S C,Shankhdhar D. Impact of elevated temperature on antioxidant activity and membrane stability in different genotypes of rice(Oryza sativa L.)[J]. Indian Journal of Plant Physiology,2016,21(1):37-43.
[28]Tang R S,Zheng J C,Jin Z Q,et al. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA,GAs and ABA in rice(Oryza sativa L.)[J]. Plant Growth Regulation,2008,54(1):37-43.
[29]曹云英,陈艳红,李卫振,等. 水稻减数分裂期幼穗激素、多胺和蛋白质对高温的响应[J]. 植物生理学报,2015,51(10):1687-1696.
[30]Rezaul I M,Baohua F,Tingting C,et al. Abscisic acid prevents pollen abortion under high‐temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum,2019,165(3):644-663.
[31]Falasca G,Franceschetti M,Bagni N,et al. Polyamine biosynthesis and control of the development of functional pollen in kiwifruit[J]. Plant Physiology & Biochemistry,2010,48(7):565-573.
[32]谢晓金,李秉柏,李映雪,等. 长江流域近55年水稻花期高温热害初探[J]. 江苏农业学报,2009,25(1):28-32.
[33]Tong L,Yoshida T. Can hot-water emasculation be applied to artificial hybridization of Indica-type cambodian rice?[J]. Plant Production Science,2008,11(1):132-133.
[34]张桂莲,张顺堂,肖浪涛,等. 抽穗开花期高温胁迫对水稻花药、花粉粒及柱头生理特性的影响[J]. 中国水稻科学,2014,28(2):155-166.
[35]Fabian A,Safran E,Szabo-Eitel G,et al. Stigma functionality and fertility are reduced by heat and drought co-stress in wheat[J]. Front Plant Sci,2019(10):244.
[36]费柯琦,杨建昌. 减数分裂期高温对水稻光温敏核不育系雌蕊和粒重的影响及其生理机制[C]//2018中国作物学会学术年会论文摘要集,2018.
[37]Takeoka Y,Hiroi K,Kitano H,et al. Pistil hyperplasia in rice spikelets as affected by heat stress[J]. Sexual Plant Reproduction,1991,4(1):39-43.
[38]Djanaguiraman M,Perumal R,Jagadish S K,et al. Sensitivity of sorghum pollen and pistil to high temperature stress[J]. Plant Cell & Environment,2017,41(5):1065-1082.
[39]Shi W J,Li X,Schmidt R C,et al. Pollen germination and in vivo fertilization in response to high-temperature during flowering in hybrid and inbred rice[J]. Plant,Cell & Environment,2018,41(6):1287-1297.
[40]吴超,崔克辉. 高温影响水稻产量形成研究进展[J]. 中国农业科技导报,2014,16(3):103-111.
[41]Zafra A,Rejón J D,Hiscock S J,et al. Patterns of ROS accumulation in the stigmas of angiosperms and visions into their multi-functionality in Plant Reproduction[J]. Frontiers in plant science,2016,7:1112.
[42]Kelliher T,Walbot V. Hypoxia triggers meiotic fate acquisition in maize[J]. Science,2012,337(6092):345-358.
[43]Zhang C X,Li G Y,Chen T T,et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils[J]. Rice,2018,11(1):14.
[44]Snider J L,Oosterhuis D M. How does timing,duration,and severity of heat stress influence pollen-pistil interactions in angiosperms[J]. Plant Signaling & Behavior,2011,6(7):930-933.
[45]Prado A M,Colao R,Moreno N,et al. Targeting of pollen tubes to ovules is dependent on nitric oxide(NO)signaling[J]. Molecular Plant,2008,1(4):703-714.
[46]Das S,Krishnan P,Nayak M,et al. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes[J]. Environmental and Experimental Botany,2014,101:36-46.
[47]张祖建,王晴晴,郎有忠,等. 水稻抽穗期高温胁迫对不同品种受粉和受精作用的影响[J]. 作物学报,2014,40(2):273-282.
[48]Matsui T,Omasa K,Horie T. High temperature at flowering inhibits swelling of pollen grains,a driving force for thecae dehiscence in rice(Oryza sativa L.)[J]. Plant Production Science,2000,3(3):430-434.
[49]Matsui T,Kobayasi K,Kagata H,et al. Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot-and-humid condition[J]. Plant Production Science,2005,8(2):109-114.
[50]Matsui T,Omasa K. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering:anther characteristics[J]. Annals of Botany,2002,89(6):683-687.
[51]何增明,周宗岳. 杂交水稻父本的散粉习性[J]. 种子,2004,23(4):70-71.
[52]Jagadish S K,Muthurajan R,Oane R,et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice(Oryza sativa L.)[J]. Journal of Experimental Botany,2010,61(1):143-156.
[53]Karuppanapandian T,Moon J C,Kim C,et al. Reactive oxygen species in plants:their Generation,signal transduction,and scavenging mechanisms[J]. Australian Journal of Crop Science,2011,5(6):709-725.
[54]Matsui T,Kagata H. Characteristics of floral organs related to reliable self-pollination in rice(Oryza sativa L.)[J]. Annals of Botany,2003,91(4):473.
[55]Wu C,Cui K H,Wang W C,et al. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice[J]. Scientific Reports,2016,6:34978.
[56]Das S,Krishnan P,Nayak M,et al. High temperature stress effects on pollens of rice(Oryza sativa L.)genotypes[J]. Environmental & Experimental Botany,2014,101(1):36-46.
[57]田小海,松井勤,李守华,等. 水稻花期高温胁迫研究进展与展望[J]. 应用生态学报,2007,18(11):2632-2636.
[58]De S N,Geelen D. The impact of environmental stress on male reproductive development in plants:biological processes and molecular mechanisms[J]. Plant,Cell & Environment,2013,37(1):1-18.
[59]Aloni B,Peet M,Pharr M,et al. The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper(Capsicum annuum)pollen in relation to its germination[J]. Physiologia Plantarum,2001,112(4):505-512.
[60]Karni L,Aloni B. Fructokinase and hexokinase from pollen grains of bell pepper(Capsicum annuum L.):possible role in pollen germination under conditions of high temperature and CO2 enrichment[J]. Annals of Botany,2002,90(5):607-612.
[61]易婧,王石华,谭学林. 温度和离体失水胁迫对开花期水稻花粉粒活性的影响[J]. 作物杂志,2010(3):64-68.
[62]Yoshida S,Satake T,Mackill D S. High temperature stress in rice[J]. IRRI Research Paper Series,1981(67):1-15.
[63]陈士强,王忠,刘满希,等. 水稻花粉萌发及花粉管生长动态[J]. 中国水稻科学,2007,21(5):513-517.
[64]Selinski J,Scheibe R. Pollen tube growth:where does the energy come from[J]. Plant Signaling & Behavior,2014,9(12):e977200.
[65]Santiago J P,Sharkey T D. Pollen development at high temperature and role of carbon and nitrogen metabolites[J]. Plant,Cell & Environment,2019,42(10):2759-2775.
[66]Pan Y J,Chai X Y,Gao Q F,et al. Dynamic interactions of plant CNGC subunits and calmodulins drive oscillatory Ca2+ channel activities[J]. Developmental Cell,2019,48(5):710-725.
[67]Kai R K,Wudick M M,Feijó J A. Calcium regulation of tip growth:new genes for old mechanisms[J]. Current Opinion in Plant Biology,2011,14(6):721-730.
[68]Parrotta L,Faleri C,Cresti M,et al. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes[J]. Planta,2016,243(1):43-63.
[69]Duan Q,Kita D,Johnson E A,et al. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis[J]. Nature Communications,2014,5(1):1-10.
[70]Muhlemann J K,Younts T B,Muday G K. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress[J]. Proceedings of the National Academy of Sciences,2019,115(47):1188-1197.
[71]Wang Y L,Wang L,Zhou J X,et al. Research progress on heat stress of rice at flowering stage[J]. Rice Science,2019,26(1):1-10.
[72]Hirabayashi H,Sasaki K,Kambe T,et al. qEMF3,a novel QTL for the early-morning flowering trait from wild rice,Oryza officinalis,to mitigate heat stress damage at flowering in rice,O. sativa[J]. Journal of Experimental Botany,2015,66(5):1227-1236.
[73]栗茂腾,蔡得田,黄利民,等. 闭颖授粉水稻CL01的抗逆性及其相适应的生理特点[J]. 作物学报,2002,28(4):541-545.
[74]Koike S,Yamaguchi T,Ohmori S,et al. Cleistogamy decreases the effect of high temperature stress at flowering in rice[J]. Plant Production Science,2015,18(2):111-117.
[75]盛婧,陈留根,朱普平,等. 不同水稻品种抽穗期对高温的响应及避热的调控措施[J]. 江苏农业学报,2006,22(4):325-330.
[76]宋忠华,庞冰,刘厚敖,等. 灌水深度对杂交稻生产中高温危害的缓解效果初探[J]. 杂交水稻,2006,21(2):72-73.
[77]段骅,俞正华,徐云姬,等. 灌溉方式对减轻水稻高温危害的作用[J]. 作物学报,2012,38(1):107-120.
[78]王玲,黄世文,王全永,等. 植物生长素对水稻叶片衰老及抗氧化酶活性的影响[J]. 浙江农业科学,2008(3):310-313.
[79]Huang Y M,Zeng X C,Cao H P. Hormonal regulation of floret closure of rice(Oryza sativa)[J]. PLoS One,2018,13(6):e198828.
[80]Shah F,Huang J,Cui K,et al. Impact of high-temperature stress on rice plant and its traits related to tolerance[J]. Journal of Agricultural Science,2011,149(5):545-556.
[81]吴晨阳,陈丹,罗海伟,等. 外源硅对花期高温胁迫下杂交水稻授粉结实特性的影响[J]. 应用生态学报,2013,24(11):3113-3122.
[82]Chhun T,Aya K,Asano K,et al. Gibberellin regulates pollen viability and pollen tube growth in rice[J]. The Plant Cell,2007,19(12):3876-3888.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]张梅秀,魏玉杰,臧广鹏,等.脱毒啤酒花的高温快繁技术[J].江苏农业科学,2013,41(05):53.
 Zhang Meixiu,et al.Study on high temperature rapid propagation techniques of virus-free Humulus lupulusL.[J].Jiangsu Agricultural Sciences,2013,41(16):53.
[6]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(16):60.
[7]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(16):62.
[8]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(16):349.
[9]李栎,纪春艳,王振中.水稻叶片质膜蛋白的提取与纯化[J].江苏农业科学,2013,41(06):44.
 Li Li,et al.Separation and purification of plasma membrane proteins from rice leaves[J].Jiangsu Agricultural Sciences,2013,41(16):44.
[10]李健,秦德荣,方兆伟,等.中熟中粳稻连粳4号播期试验研究[J].江苏农业科学,2013,41(06):64.
 Li Jian,et al.Study on sowing date of medium-ripening medium japonica rice cultivar “Lianjing No.4”[J].Jiangsu Agricultural Sciences,2013,41(16):64.
[11]张林巧,尹康,杨德祯,等.粳稻扬粳3012在不同播期条件下的产量表现[J].江苏农业科学,2019,47(21):137.
 Zhang Linqiao,et al.Yield performance of japonica rice “Yangjing 3012” under different sowing dates[J].Jiangsu Agricultural Sciences,2019,47(16):137.

备注/Memo

备注/Memo:
收稿日期:2019-08-02
基金项目:国家重点研发计划(编号:2017YFD0300100);江苏省自然科学基金(编号:BK20180537);江苏省研究生科研与实践创新计划(编号:SJCX19_0116)。
作者简介:宋有金(1993—),男,安徽阜阳人,硕士研究生,主要从事水稻高产栽培与逆境生理研究。E-mail:15621593619@163.com。
通信作者:吴超,博士,副研究员,主要从事植物逆境生理研究。E-mail:cwwuchao@njau.edu.cn。
更新日期/Last Update: 2020-08-20