[1]Talbot N J. On the trail of a cereal killer:Exploring the biology of Magnaporthe grisea[J]. Annu Rev Microbiol,2003,57:177-202.
[2]Skamnioti P,Gurr S J. Against the grain:safeguarding rice from rice blast disease[J]. Trends Biotechnol,2009,27:141-150.
[3]Dorter I,Momany M. Fungal cell cycle:A unicellular versus multicellular comparison[J]. Microbiol Spectr,2016,4:551-570.
[4]Saunders D G,Aves S J,Talbot N J. Cell cycle-mediated regulation of plant infection by the rice blast fungus[J]. Plant Cell,2010,22:497-507.
[5]Steinberg G,Perez-Martin J. Ustilago maydis,a new fungal model system for cell biology[J]. Trends Cell Biol,2008,18:61-67.
[6]Whiteway M,Bachewich C. Morphogenesis in Candida albicans[J]. Annu Rev Microbiol,2007,61:529-553.
[7]Perezmartin J,Bardetti P,Castanheira S,et al. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi[J]. Semin Cell Dev Biol,2016,57:93-99.
[8]Susumu K,Zuzana M,Eric V,et al. Cell cycle regulation and hypoxic adaptation in the pathogenic yeast Cryptococcus neoformans[J]. FASEB J,2018,32:533.
[9]Tavanez J P,Caetano R,Branco C,et al. Hepatitis delta virus interacts with splicing factor SF3B155 and alters pre-mRNA splicing of cell cycle control genes[J]. FEBS J,2020,PMID:32352217.
[10]Vijaykrishna N,Melangath G,Kumar R,et al. The Fission yeast pre-mRNA-processing factor 18 (prp18+) has intron-specific splicing functions with links to G1-S cell cycle progression[J]. J Biol Chem,2016,291:27387-27402.
[11]Chawla G,Sapra A K,Surana U,et al. Dependence of pre-mRNA introns on PRP17,a non-essential splicing factor:implications for efficient progression through cell cycle transitions[J]. Nucleic Acids Res,2003,31:2333-2343.
[12]Dahan O,Kupiec M. The Saccharomyces cerevisiae gene CDC40/PRP17 controls cell cycle progression through splicing of the ANC1 gene[J]. Nucleic Acids Res,2004,32:2529-2540.
[13]Saha D,Banerjee S,Bashir S,et al. Context dependent splicing functions of Bud31/Ycr063w define its role in budding and cell cycle progression[J]. Biochem Bioph Res Co,2012,424:579-585.
[14]Dean R A,Talbot N J,Ebbole D J,et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature,2005,434:980-986.
[15]董妍涵. 稻瘟病菌的组学分析和致病相关基因的挖掘及功能研究[D]. 南京:南京农业大学,2014.
[16]Dirick L,Bohm T,Nasmyth K. Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae[J]. EMBO J,1995,14:4803-4813.
[17]Linke C,Chasapi A,Gonzalez-Novo A,et al. A Clb/Cdk1-mediated regulation of Fkh2 synchronizes CLB expression in the budding yeast cell cycle[J]. NPJ Syst Biol Appl,2017,3:7.
[18]Kerscher O. SUMO junction-whats your function? New insights through SUMO-interacting motifs[J]. EMBO Rep,2007,8:550-555.
[19]Seeler J S,Dejean A. Nuclear and unclear functions of SUMO[J]. Nat Rev Mol Cell Bio,2003,4:690-699.
[20]Jackson SP,Durocher D. Regulation of DNA damage responses by ubiquitin and SUMO[J]. Mol Cell Biol,2013,49:795-807.
[21]Ulrich H D. Two-way communications between ubiquitin-like modifiers and DNA[J]. Nat Struct Mol Biol,2014,21:317-324.
[22]Jentsch S,Psakhye I. Control of nuclear activities by substrate-selective and protein-group SUMOylation[J]. Annu Rev Genet,2013,47:167-186.
[23]Altmannova V,Kolesar P,Krejci L. SUMO wrestles with recombination[J]. Biomolecules,2012,2:350-375.
[24]Sarangi P,Zhao X. SUMO-mediated regulation of DNA damage repair and responses[J]. Trends Biochem Sci,2015,40:233-242.
[25]Ranjha L,Levikova M,Altmannova V,et al. Sumoylation regulates the stability and nuclease activity of Saccharomyces cerevisiae Dna2[J]. Commun Biol,2019,2:174.
[26]Hietakangas V,Anckar J,Blomster H A,et al. PDSM,a motif for phosphorylation-dependent SUMO modification[J]. PNAS,2006,103:45-50.
[27]Hietakangas V,Ahlskog JK,Jakobsson AM,et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1[J]. Mol Cell Biol,2003,23:2953-2968.
[1]周昊,徐寸发,齐中强,等.不同胁迫因子对稻瘟病菌菌丝形态的影响[J].江苏农业科学,2015,43(12):150.
Zhou Hao,et al.Effects of different inhibition effectors on mycelium morphogenesis of Magnaporthe oryzae[J].Jiangsu Agricultural Sciences,2015,43(18):150.
[2]王伟舵,刘永锋.中国稻瘟病菌遗传多样性研究进展[J].江苏农业科学,2016,44(06):196.
Wang Weiduo,et al.Research progress on Chinas genetic diversity of Magnaporthe grisea[J].Jiangsu Agricultural Sciences,2016,44(18):196.
[3]马军韬,张国民,辛爱华,等.2套鉴别品种对哈尔滨市、鸡西市稻瘟病菌的致病性分析[J].江苏农业科学,2016,44(07):165.
Ma Juntao,et al.Pathogenic analysis of Magnaporthe oryzae from Harbin City and Jixi City using 2 differential varieties[J].Jiangsu Agricultural Sciences,2016,44(18):165.
[4]张翠荣,李 明,李荣玉.5种植物粗提物对稻瘟病菌的抑菌活性[J].江苏农业科学,2016,44(08):162.
Zhang Cuirong,et al.Bacteriostatic activity of crude extracts from five kinds of plants[J].Jiangsu Agricultural Sciences,2016,44(18):162.
[5]马军韬,张国民,辛爱华,等.24个抗瘟基因与哈尔滨市稻瘟病菌互作分析[J].江苏农业科学,2016,44(08):164.
Ma Juntao,et al.Interaction analysis of 24 blast-resistance genes and Magnaporthe oryzae from Harbin City[J].Jiangsu Agricultural Sciences,2016,44(18):164.
[6]徐婧,沈晓兰,周捷,等.生物农药茶多酚微乳剂的制备及其对稻瘟病菌的抑制效果[J].江苏农业科学,2017,45(19):191.
Xu Jing,et al.Preparation of biological pesticide tea polyphenols micro emulsion and its inhibitory effect on Magnaporthe grisea[J].Jiangsu Agricultural Sciences,2017,45(18):191.
[7]马军韬,张国民,张丽艳,等.黑龙江省水稻品种抗性与稻瘟病病菌致病性年际变化趋势分析[J].江苏农业科学,2017,45(20):109.
Ma Juntao,et al.Analysis of interannual variability of rice cultivar resistance and Magnaporthe grisea pathogenicity in Heilongjiang Province[J].Jiangsu Agricultural Sciences,2017,45(18):109.
[8]贺雄,丁朝辉,胡立冬,等.湖南48个水稻栽培品种抗瘟性评价及抗性基因鉴定[J].江苏农业科学,2020,48(1):108.
He Xiong,et al.Evaluation and identification of resistance genotypes in 48 rice cultivars against rice blast in Hunan Province[J].Jiangsu Agricultural Sciences,2020,48(18):108.
[9]魏浩卓,李宁,李静泉.稻瘟病拮抗菌短小芽孢杆菌NDY-10的功能特性与全基因组分析[J].江苏农业科学,2024,52(12):277.
Wei Haozhuo,et al.Functional characteristics of Bacillus pumilus NDY-10 against Magnaporthe oryzae and its genome-wide analysis[J].Jiangsu Agricultural Sciences,2024,52(18):277.
[10]凤舞剑,张莹,韩波,等.基于转录组和AlphaFold快速鉴定水稻特异性响应稻瘟病菌侵染的转录因子和靶标[J].江苏农业科学,2025,53(4):23.
Feng Wujian,et al.Rapid identification of rice-specific transcription factors and targets in response to Magnaporthe oryzae infection based on transcriptome and AlphaFold[J].Jiangsu Agricultural Sciences,2025,53(18):23.