[1]Vanneste J L. The scientific,economic,and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae)[J]. Annual Review of Phytopathology,2017,55(1):377-399.
[2]Takikawa Y,Serizawa S,Ichikawa T,et al. Pseudomonas syringae pv. actinidiae pv. nov.:the causal bacterium of canker of kiwifruit in Japan[J]. Japanese Journal of Phytopathology,1989,55(4):437-444.
[3]Scortichini M,Marcelletti S,Ferrante P,et al. Pseudomonas syringae pv. actinidiae:a re-emerging,multi-faceted,pandemic pathogen[J]. Molecular Plant Pathology,2012,13(7):631-640.
[4]Vanneste J L. Pseudomonas syringae pv. actinidiae(Psa):a threat to the New Zealand and global kiwifruit industry[J]. New Zealand Journal of Crop and Horticultural Science,2012,40(4):265-267.
[5]Kim M J,Chae D H,Cho G,et al. Characterization of antibacterial strains against kiwifruit bacterial canker pathogen[J]. The Plant Pathology Journal,2019,35(5):473-485.
[6]Horgan D B,Gaskin R E . The effect of copper on the uptake and translocation of spirotetramat insecticide on kiwifruit[J]. New Zealand Plant Protection,2015,68:26-31.
[7]秦虎强,赵志博,高小宁,等. 四种杀菌剂防治猕猴桃溃疡病的效果及田间应用技术[J]. 植物保护学报,2016,43(2):321-328.
[8]Wicaksono W A,Jones E E,Casonato S,et al. Biological control of Pseudomonas syringae pv. actinidiae (Psa),the causal agent of bacterial canker of kiwifruit,using endophytic bacteria recovered from a medicinal plant[J]. Biological Control,2018,116:103-112.
[9]Pinheiro L,Pereira C,Frazo C,et al. Efficiency of phage φ6 for biocontrol of Pseudomonas syringae pv. syringae:an in vitro preliminary study[J]. Microorganisms,2019,7(9):286.
[10]高小宁,赵志博,黄其玲,等. 猕猴桃细菌性溃疡病研究进展[J]. 果树学报,2012,29(2):262-268.
[11]罗轩,李才国,张蕾,等. 早熟抗溃疡病猕猴桃优系“JS67”选育初报[J]. 中国南方果树,2018,47(5):148-150.
[12]de Jong H,Reglinski T,Elmer P A G,et al. Integrated use of Aureobasidium pullulans strain CG163 and acibenzolar-S-methyl for management of bacterial canker in kiwifruit[J]. Plants,2019,8(8):287.
[13]李春游,赵志博,吴玉星,等. 陕西关中地区猕猴桃溃疡病菌对链霉素的抗药性监测[J]. 中国果树,2016(6):59-62.
[14]Masami N,Masao G,Hibi T. Similarity between copper resistance genes from Pseudomonas syringae pv. actinidiae and P. syringae pv. tomato[J]. Journal of General Plant Pathology,2002,68(1):68-74.
[15]He R,Liu P,Jia B,et al. Genetic diversity of Pseudomonas syringae pv. actinidiae strains from different geographic regions in China[J]. Phytopathology,2019,109(3):347-357.
[16]马志宏,杨慧,李铁梁,等. 西伯利亚鲟(Acipenser baerii)致病性维氏气单胞菌的分离鉴定[J]. 微生物学报,2009,49(10):1289-1294.
[17]钟永军,何昕蔚,余达勇,等. 台州猕猴桃溃疡病病原菌分子鉴定及药剂筛选[J]. 浙江农业学报,2018,30(9):1548-1554.
[18]Luo R B,Liu B H,Xie Y L,et al. SOAPdenovo2:an empirically improved memory-efficient short-read de novo assembler[J]. GigaScience,2012,1(1):18.
[19]Stothard P,Wishart D S. Circular genome visualization and exploration using CGView[J]. Bioinformatics,2005,21(4):537-539.
[20]Delcher A L,Bratke K A,Powers E C,et al. Identifying bacterial genes and endosymbiont DNA with Glimmer[J]. Bioinformatics,2007,23(6):673-679.
[21]Benson G. Tandem repeats finder:a program to analyze DNA sequences[J]. Nucleic Acids Research,1999,27(2):573-580.
[22]Sarkar S F,Guttman D S. Evolution of the core genome of Pseudomonas syringae,a highly clonal,endemic plant pathogen[J]. Applied and Environmental Microbiology,2004,70(4):1999-2012.
[23]Kumar S,Stecher G,Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874.
[24]Chen L H,Zheng D D,Liu Bo,et al. VFDB 2016:hierarchical and refined dataset for big data analysis-10 years on[J]. Nucleic Acids Research,2016,44(1):694-697.
[25]Jia B F,Raphenya A R,Alcock B,et al. CARD 2017:expansion and model-centric curation of the comprehensive antibiotic resistance database[J]. Nucleic Acids Research,2017,45(1):566-573.
[26]Urban M,Cuzick A,Rutherford K,et al. PHI-base:a new interface and further additions for the multi-species pathogen-host interactions database[J]. Nucleic Acids Research,2017,45(1):604-610.
[27]Fujikawa T,Sawada H. Genome analysis of Pseudomonas syringae pv. actinidiae biovar 6,which produces the phytotoxins,phaseolotoxin and coronatine[J]. Scientific Reports,2019,9(1):3836.
[28]Koh H S,Kim G H,Lee Y S,et al. Molecular characteristics of Pseudomonas syringae pv. actinidiae strains isolated in Korea and a multiplex PCR assay for haplotype differentiation[J]. The Plant Pathology Journal,2014,30(1):96-101.
[29]Hacker J,Carniel E. Ecological fitness,genomic islands and bacterial pathogenicity[J]. EMBO Reports,2001,2(5):376-381.
[30]Hacker J,Blumoehler G,Muhldorfer I,et al. Pathogenicity islands of virulent bacteria:structure,function and impact on microbial evolution[J]. Molecular Microbiology,1997,23(6):1089-1097.
[31]何利钦,王丽华,李明章,等. 四川省猕猴桃溃疡病调查及病原菌株型鉴定[J]. 中国南方果树,2019,48(4):73-78,90.
[32]崔丽红,高小宁,张迪,等. 湘西地区猕猴桃细菌性溃疡病抗性资源筛选及其抗性机理研究[J]. 植物保护,2019,45(3):158-164.
[33]Marcelletti S,Ferrante P,Petriccione M,et al. Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species[J]. PLoS One,2011,6(11):e27297.
[34]Neilands J B. Siderophores:structure and function of microbial iron transport compounds[J]. The Journal of Biological Chemistry,1995,270(45):26723-26726.
[35]Lamont I L,Beare P A,Ochsner U,et al. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences,2002,99(10):7072-7077.
[36]Wooldridge K G,Williams P H. Iron uptake mechanisms of pathogenic bacteria[J]. FEMS Microbiology Reviews,1993,12(4):325-348.
[37]Katuzna M. Characterization and phylogeny of the novel taxon of Pseudomonas spp.,closely related to Pseudomonas avellanae as causal agent of a bacterial leaf blight of cornelian cherry(Cornus mas L.)and Pseudomonas syringae pv. syringae as a new bacterial pathogen of red dogwood (Cornus sanguinea L.)[J]. Journal of Plant Pathology,2019,101(2):251-261.
[38]王斌,叶冬青,王红,等. 大肠埃希菌中强毒力岛的irp1、irp3、irp4基因检测[J]. 疾病控制杂志,2005,9(5):376-379.
[39]Carniel E,Guilvout I,Prentice M. Characterization of a large chromosomal “high-pathogenicity island” in biotype 1B Yersinia enterocolitica[J]. Journal of Bacteriology,1996,178(23):6743-6751.
[40]Expert D,Franza T,Dellagi A. Iron in plant-pathogen interactions[M]//Expert D,OBrian M R.Molecular Aspects of Iron Metabolism in Pathogenic and Symbiotic Plant-Microbe Associations. Dordrecht:Springer,2012:7-39.
[41]McCann H C,Rikkerink E H,Bertels F,et al. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease[J]. PLoS Pathogens,2013,9(7):e1003503.
[42]Alfano J R,Collmer A. The type Ⅲ (Hrp) secretion pathway of plant pathogenic bacteria:trafficking harpins,avr proteins,and death[J]. Journal of Bacteriology,1997,179(18):5655-5662.
[43]Deng W L,Preston G,Collmer A,et al. Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae,tomato,and glycinea and analysis of the ability of hrpF,hrpG,hrcC,hrpT,and hrpV mutants to elicit the hypersensitive response and disease in plants[J]. Journal of Bacteriology,1998,180(17):4523-4531.
[44]Abreu A C,Mcbain A J,Simes M. Plants as sources of new antimicrobials and resistance-modifying agents[J]. Natural Product Reports,2012,29(9):1007-1021.