|本期目录/Table of Contents|

[1]邓博涵,刘丹蕾,陈秋菊,等.1株三型丁香假单胞菌猕猴桃致病变种细菌全基因组扫描图测序及分析[J].江苏农业科学,2020,48(20):67-74.
 Deng Bohan,et al.Analysis of whole genome sequence of Pseudomonas syringae pv. actinidiae biovar 3 strain GX05[J].Jiangsu Agricultural Sciences,2020,48(20):67-74.
点击复制

1株三型丁香假单胞菌猕猴桃致病变种细菌全基因组扫描图测序及分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第20期
页码:
67-74
栏目:
生物技术
出版日期:
2020-10-20

文章信息/Info

Title:
Analysis of whole genome sequence of Pseudomonas syringae pv. actinidiae biovar 3 strain GX05
作者:
邓博涵1刘丹蕾1陈秋菊1倪培恩1张子蕾1王大鹏1纠松涛1王磊1马超1张才喜1王世平1
1.上海交通大学农业与生物学院,上海 200240; 2.上海浦蔬农业科技有限公司,上海 200240;
3.浙江省遂昌县农业农村局,浙江遂昌 323300
Author(s):
Deng Bohanet al
关键词:
丁香假单胞菌猕猴桃致病变种猕猴桃细菌性溃疡病全基因组测序毒力基因耐药基因致病基因
Keywords:
-
分类号:
S436.634.1+9
DOI:
-
文献标志码:
A
摘要:
丁香假单胞菌猕猴桃致病变种(Pseudomonas syringae pv. actinidiae,简称Psa)是引起猕猴桃细菌性溃疡病的病原菌。对从感染溃疡病的东红猕猴桃枝条中分离得到的1株Psa野生株(命名为GX05)进行全基因组测序,获得基因组草图,分析其中毒力基因、耐药基因和致病基因的情况。研究发现,多位点序列分型结果显示GX05为biovar 3,与毒力因子数据库比对,GX05携带99种毒力因子及692个相关毒力基因,同源性和匹配度最高的毒力因子是PvdL和Irp[STBX]1[STBZ];与综合抗生素抗性基因数据库比对,GX05携带336种耐药基因,与29种抗生素有关;与病原宿主互作数据库比对,不表达导致病原菌致病力减弱的基因数量最多,其中同源性和匹配度最高的是PvdL,此外与增强致病力相关的同源性和匹配度最高的基因是hrcC。通过全基因组测序信息初步分析了1株三型Psa菌株中存在的毒力、耐药及致病基因情况,对深入研究其致病机制和合理用药有重要意义。
Abstract:
-

参考文献/References:

[1]Vanneste J L. The scientific,economic,and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae)[J]. Annual Review of Phytopathology,2017,55(1):377-399.
[2]Takikawa Y,Serizawa S,Ichikawa T,et al. Pseudomonas syringae pv. actinidiae pv. nov.:the causal bacterium of canker of kiwifruit in Japan[J]. Japanese Journal of Phytopathology,1989,55(4):437-444.
[3]Scortichini M,Marcelletti S,Ferrante P,et al. Pseudomonas syringae pv. actinidiae:a re-emerging,multi-faceted,pandemic pathogen[J]. Molecular Plant Pathology,2012,13(7):631-640.
[4]Vanneste J L. Pseudomonas syringae pv. actinidiae(Psa):a threat to the New Zealand and global kiwifruit industry[J]. New Zealand Journal of Crop and Horticultural Science,2012,40(4):265-267.
[5]Kim M J,Chae D H,Cho G,et al. Characterization of antibacterial strains against kiwifruit bacterial canker pathogen[J]. The Plant Pathology Journal,2019,35(5):473-485.
[6]Horgan D B,Gaskin R E . The effect of copper on the uptake and translocation of spirotetramat insecticide on kiwifruit[J]. New Zealand Plant Protection,2015,68:26-31.
[7]秦虎强,赵志博,高小宁,等. 四种杀菌剂防治猕猴桃溃疡病的效果及田间应用技术[J]. 植物保护学报,2016,43(2):321-328.
[8]Wicaksono W A,Jones E E,Casonato S,et al. Biological control of Pseudomonas syringae pv. actinidiae (Psa),the causal agent of bacterial canker of kiwifruit,using endophytic bacteria recovered from a medicinal plant[J]. Biological Control,2018,116:103-112.
[9]Pinheiro L,Pereira C,Frazo C,et al. Efficiency of phage φ6 for biocontrol of Pseudomonas syringae pv. syringae:an in vitro preliminary study[J]. Microorganisms,2019,7(9):286.
[10]高小宁,赵志博,黄其玲,等. 猕猴桃细菌性溃疡病研究进展[J]. 果树学报,2012,29(2):262-268.
[11]罗轩,李才国,张蕾,等. 早熟抗溃疡病猕猴桃优系“JS67”选育初报[J]. 中国南方果树,2018,47(5):148-150.
[12]de Jong H,Reglinski T,Elmer P A G,et al. Integrated use of Aureobasidium pullulans strain CG163 and acibenzolar-S-methyl for management of bacterial canker in kiwifruit[J]. Plants,2019,8(8):287.
[13]李春游,赵志博,吴玉星,等. 陕西关中地区猕猴桃溃疡病菌对链霉素的抗药性监测[J]. 中国果树,2016(6):59-62.
[14]Masami N,Masao G,Hibi T. Similarity between copper resistance genes from Pseudomonas syringae pv. actinidiae and P. syringae pv. tomato[J]. Journal of General Plant Pathology,2002,68(1):68-74.
[15]He R,Liu P,Jia B,et al. Genetic diversity of Pseudomonas syringae pv. actinidiae strains from different geographic regions in China[J]. Phytopathology,2019,109(3):347-357.
[16]马志宏,杨慧,李铁梁,等. 西伯利亚鲟(Acipenser baerii)致病性维氏气单胞菌的分离鉴定[J]. 微生物学报,2009,49(10):1289-1294.
[17]钟永军,何昕蔚,余达勇,等. 台州猕猴桃溃疡病病原菌分子鉴定及药剂筛选[J]. 浙江农业学报,2018,30(9):1548-1554.
[18]Luo R B,Liu B H,Xie Y L,et al. SOAPdenovo2:an empirically improved memory-efficient short-read de novo assembler[J]. GigaScience,2012,1(1):18.
[19]Stothard P,Wishart D S. Circular genome visualization and exploration using CGView[J]. Bioinformatics,2005,21(4):537-539.
[20]Delcher A L,Bratke K A,Powers E C,et al. Identifying bacterial genes and endosymbiont DNA with Glimmer[J]. Bioinformatics,2007,23(6):673-679.
[21]Benson G. Tandem repeats finder:a program to analyze DNA sequences[J]. Nucleic Acids Research,1999,27(2):573-580.
[22]Sarkar S F,Guttman D S. Evolution of the core genome of Pseudomonas syringae,a highly clonal,endemic plant pathogen[J]. Applied and Environmental Microbiology,2004,70(4):1999-2012.
[23]Kumar S,Stecher G,Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874.
[24]Chen L H,Zheng D D,Liu Bo,et al. VFDB 2016:hierarchical and refined dataset for big data analysis-10 years on[J]. Nucleic Acids Research,2016,44(1):694-697.
[25]Jia B F,Raphenya A R,Alcock B,et al. CARD 2017:expansion and model-centric curation of the comprehensive antibiotic resistance database[J]. Nucleic Acids Research,2017,45(1):566-573.
[26]Urban M,Cuzick A,Rutherford K,et al. PHI-base:a new interface and further additions for the multi-species pathogen-host interactions database[J]. Nucleic Acids Research,2017,45(1):604-610.
[27]Fujikawa T,Sawada H. Genome analysis of Pseudomonas syringae pv. actinidiae biovar 6,which produces the phytotoxins,phaseolotoxin and coronatine[J]. Scientific Reports,2019,9(1):3836.
[28]Koh H S,Kim G H,Lee Y S,et al. Molecular characteristics of Pseudomonas syringae pv. actinidiae strains isolated in Korea and a multiplex PCR assay for haplotype differentiation[J]. The Plant Pathology Journal,2014,30(1):96-101.
[29]Hacker J,Carniel E. Ecological fitness,genomic islands and bacterial pathogenicity[J]. EMBO Reports,2001,2(5):376-381.
[30]Hacker J,Blumoehler G,Muhldorfer I,et al. Pathogenicity islands of virulent bacteria:structure,function and impact on microbial evolution[J]. Molecular Microbiology,1997,23(6):1089-1097.
[31]何利钦,王丽华,李明章,等. 四川省猕猴桃溃疡病调查及病原菌株型鉴定[J]. 中国南方果树,2019,48(4):73-78,90.
[32]崔丽红,高小宁,张迪,等. 湘西地区猕猴桃细菌性溃疡病抗性资源筛选及其抗性机理研究[J]. 植物保护,2019,45(3):158-164.
[33]Marcelletti S,Ferrante P,Petriccione M,et al. Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species[J]. PLoS One,2011,6(11):e27297.
[34]Neilands J B. Siderophores:structure and function of microbial iron transport compounds[J]. The Journal of Biological Chemistry,1995,270(45):26723-26726.
[35]Lamont I L,Beare P A,Ochsner U,et al. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences,2002,99(10):7072-7077.
[36]Wooldridge K G,Williams P H. Iron uptake mechanisms of pathogenic bacteria[J]. FEMS Microbiology Reviews,1993,12(4):325-348.
[37]Katuzna M. Characterization and phylogeny of the novel taxon of Pseudomonas spp.,closely related to Pseudomonas avellanae as causal agent of a bacterial leaf blight of cornelian cherry(Cornus mas L.)and Pseudomonas syringae pv. syringae as a new bacterial pathogen of red dogwood (Cornus sanguinea L.)[J]. Journal of Plant Pathology,2019,101(2):251-261.
[38]王斌,叶冬青,王红,等. 大肠埃希菌中强毒力岛的irp1、irp3、irp4基因检测[J]. 疾病控制杂志,2005,9(5):376-379.
[39]Carniel E,Guilvout I,Prentice M. Characterization of a large chromosomal “high-pathogenicity island” in biotype 1B Yersinia enterocolitica[J]. Journal of Bacteriology,1996,178(23):6743-6751.
[40]Expert D,Franza T,Dellagi A. Iron in plant-pathogen interactions[M]//Expert D,OBrian M R.Molecular Aspects of Iron Metabolism in Pathogenic and Symbiotic Plant-Microbe Associations. Dordrecht:Springer,2012:7-39.
[41]McCann H C,Rikkerink E H,Bertels F,et al. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease[J]. PLoS Pathogens,2013,9(7):e1003503.
[42]Alfano J R,Collmer A. The type Ⅲ (Hrp) secretion pathway of plant pathogenic bacteria:trafficking harpins,avr proteins,and death[J]. Journal of Bacteriology,1997,179(18):5655-5662.
[43]Deng W L,Preston G,Collmer A,et al. Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae,tomato,and glycinea and analysis of the ability of hrpF,hrpG,hrcC,hrpT,and hrpV mutants to elicit the hypersensitive response and disease in plants[J]. Journal of Bacteriology,1998,180(17):4523-4531.
[44]Abreu A C,Mcbain A J,Simes M. Plants as sources of new antimicrobials and resistance-modifying agents[J]. Natural Product Reports,2012,29(9):1007-1021.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-01-02
基金项目:猕猴桃根域限制栽培技术研究及示范(编号:MH235);猕猴桃溃疡病综合防治技术研究与示范(编号:2018-J15)。
作者简介:邓博涵(1995—),女,湖北荆州人,硕士研究生,研究方向为果树病害的研究。E-mail:bohandeng@163.com。
通信作者:许文平,博士,副研究员,从事果实品质生物学、果实采后生物学等研究。E-mail:wp-xu@sjtu.edu.cn。
更新日期/Last Update: 2020-11-09