|本期目录/Table of Contents|

[1]张霞,周存宇,李俊凯,等.根皮层结构和组织化学分化及生理功能研究进展[J].江苏农业科学,2021,49(14):33-39.
 Zhang Xia,et al.Research progress on structure, histochemical differentiation and physiological function of root cortex[J].Jiangsu Agricultural Sciences,2021,49(14):33-39.
点击复制

根皮层结构和组织化学分化及生理功能研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第14期
页码:
33-39
栏目:
专论与综述
出版日期:
2021-07-20

文章信息/Info

Title:
Research progress on structure, histochemical differentiation and physiological function of root cortex
作者:
张霞 周存宇 李俊凯 杨代勤 杨朝东
长江大学湿地生态与农业利用教育部工程研究中心/涝渍灾害与湿地农业湖北省重点实验室,湖北荆州 434025
Author(s):
Zhang Xiaet al
关键词:
根皮层皮层分化生态适应离子吸收生态修复
Keywords:
-
分类号:
S184
DOI:
-
文献标志码:
A
摘要:
维管植物根的皮层具内皮层和外皮层,这两者之间的中间皮层分为内侧皮层、外侧皮层、厚壁层和皮下层,有的植物缺乏外侧皮层、厚壁层和外皮层。皮层具额外细胞分裂、细胞器状结构、“O”“C”“Φ”状和均匀增厚或木质化等结构分化。这些皮层结构分化与适应水湿寡营养环境和陆生干旱、附生或气生环境密切联系;具有调节和限制离子自由出入的屏障保护功能,并与矿质营养吸收和超聚集重金属离子功能有关。皮层木质化可能是作物高亲和力/高容量矿质养分吸收转运系统的结构性状,这可以为作物选育高效利用水和矿质营养的品种提供理论依据,可以为选择高效修复离子污染环境的植物提供结构特征依据,也为研究入侵植物的入侵机制等生态学问题提供新思路。
Abstract:
-

参考文献/References:

[1]Gratani L. Plant phenotypic plasticity in response to environmental factors[J]. Advances in Botany,2014(4):1-17.
[2]Pham B,McConnaughay K. Plant phenotypic expression in variable environments[M]//Monson R. Ecology and the environment. New York:Springer,2015:1-19.
[3]Steffens B,Rasmussen A. The physiology of adventitious roots[J]. Plant Physiology,2016,170(2):603-617.
[4]Gonin M,Bergougnoux V,Nguyen T D,et al. What makes adventitious roots?[J]. Plants,2019,8(7):240.
[5]Mittelbach G G,McGill B J. Community ecology[M]. 2nd ed. Oxford:Oxford University Press,2019.
[6]Rasmussen A,Dobrijevic D P,Ola A,et al. Aerial root physiology:reaching for the sky or down to earth?[J]. Annual Plant Reviews,2019,2:1-32.
[7]van Veen H,Sasidharan R. Shape shifting by amphibious plants in dynamic hydrological niches[J]. The New Phytologist,2021,229(1):79-84.
[8]Lynch J P. Roots of the second green revolution[J]. Australian Journal of Botany,2007,55(5):493-512.
[9]Lynch J P. Root phenotypes for improved nutrient capture:an underexploited opportunity for global agriculture[J]. The New Phytologist,2019,223(2):548-564.
[10]Paez-Garcia A,Motes C M,Scheible W R,et al. Root traits and phenotyping strategies for plant improvement[J]. Plants,2015,4(2):334-355.
[11]White P J. Root traits benefitting crop production in environments with limited water and nutrient availability[J]. Annals of Botany,2019,124(6):883-890.
[12]Fahn A. Plant anatomy[M]. 4th ed. Oxford,UK:Pergamon Press,1990.
[13]Lux A,Luxová M,Abe J,et al. Root cortex:structural and functional variability and responses to environmental stress[J]. Root Research,2004,13(3):117-131.
[14]Evert R F. Esaus plant anatomy:meristems,cells,and tissues of the plant body:their structure,function,and development[M]. 3rd ed. Hoboken,New Jersey,USA:Wiley-Interscience,2006.
[15]Seago J L,Fernando D D. Anatomical aspects of angiosperm root evolution[J]. Annals of Botany,2013,112(2):223-238.
[16]Crang R,Lyons-Sobaski S,Wise R. Periderm:a concept-based approach to the structure of seed plants[M]//Plant anatomy. Gewerbestrasse,Switzerland:Springer,2018:553-575.
[17]杨朝东,张霞,刘国锋,等. 植物根中质外体屏障结构和生理功能研究进展[J]. 植物研究,2013,33(1):114-119.
[18]Soukup A,Seago J J,Votrubová O. Developmental anatomy of the root cortex of the basal monocotyledon,Acorus calamus (Acorales,Acoraceae)[J]. Annals of Botany,2005,96(3):379-385.
[19]Heimsch C,Seago J L. Organization of the root apical meristem in angiosperms[J]. American Journal of Botany,2008,95(1):1-21.
[20]Fujinami R,Yamada T,Nakajima A,et al. Root apical meristem diversity in extant lycophytes and implications for root origins[J]. The New Phytologist,2017,215(3):1210-1220.
[21]Zelko I,Lux A,Czibula K. Difference in the root structure of hyperaccumulator Thlaspi caerulescens and non-hyperaccumulator Thlaspi arvense[J]. International Journal of Environment and Pollution,2008,33(2/3):123-132.
[22]Fernandez-Garcia N,Lopez-Perez L,Hernandez M,et al. Role of phi cells and the endodermis under salt stress in Brassica oleracea[J]. The New Phytologist,2009,181(2):347-360.
[23]Tuladhar A,Nii N. Anatomical studies on Myrtaceae roots[J]. Acta horticulturae,2017,1166:55-62.
[24]Zhang X,Yang C D,Seago Jr. J L. Anatomical and histochemical traits of roots and stems of Artemisia lavandulaefolia and A. selengensis (Asteraceae) in the Jianghan Floodplain,China[J]. Flora,2018,239:87-97.
[25]Aleamotua M,McCurdy D W,Collings D. Phi thickenings in roots:novel secondary wall structures responsive to biotic and abiotic stresses[J]. Journal of Experimental Botany,2019,70(18):4631-4642.
[26]Idris N,Collings D A. The induction and roles played by phi thickenings in orchid roots[J]. Plants (Basel,Switzerland),2019,8(12):574.
[27]Xiang J Q,Ming J J,Yin H Q,et al. Anatomy and histochemistry of the roots and shoots in the aquatic selenium hyperaccumulator Cardamine hupingshanensis (Brassicaceae) [J]. Open Life Science,2019,14(1):318-326.
[28]Yang C D,Zhang X,Wang T,et al. Phenotypic plasticity in the structure of fine adventitious Metasequoia glyptostroboides roots allows adaptation to aquatic and terrestrial environments[J]. Plants,2019,8(11):501.
[29]Yang C D,Yang X L,Zhang X,et al. Anatomical structures of alligator weed (Alternanthera philoxeroides) suggest it is well adapted to the aquatic-terrestrial transition zone[J]. Flora,2019,253:27-34.
[30]Kovácˇ J,Lux A,Soukup M,et al. A new insight on structural and some functional aspects of peri-endodermal thickenings,a specific layer in Noccaea caerulescens roots[J]. Annals of Botany,2020,126(3):423-434.
[31]Seago J J,Marsh L C,Stevens K J,et al. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma[J]. Annals of Botany,2005,96(4):565-579.
[32]Yang C D,Zhang X,Zhou C Y,et al. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River,China[J]. Flora,2011,206(7):653-661.
[33]Yang C D,Zhang X,Li J K,et al. Anatomy and histochemistry of roots and shoots in wild rice (Zizania latifolia Griseb.) [J]. Journal of Botany,2014:181727.
[34]Yang C D,Zhang X,Seago Jr. J L,et al. Anatomical and histochemical features of Brasenia schreberi (Cabombaceae) shoots[J]. Flora,2020,263:151524.
[35]Enstone D E,Peterson C A,Ma F S. Root endodermis and exodermis:structure,function,and responses to the environment[J]. Journal of Plant Growth Regulation,2002,21(4):335-351.
[36]Lux A,Rost T L. Plant root research:the past,the present and the future[J]. Annals of Botany,2012,110(2):201-204.
[37]Roppolo D,De Rybel B,Dénervaud T V,et al. A novel protein family mediates Casparian strip formation in the endodermis[J]. Nature,2011,473(7347):380-383.
[38]Geldner N. The endodermis[J]. Annual Review of Plant Biology,2013,64:531-558.
[39]Barberon M. The endodermis as a checkpoint for nutrients[J]. The New Phytologist,2017,213(4):1604-1610.
[40]Pauluzzi G,Divol F,Puig J,et al. Surfing along the root ground tissue gene network[J]. Developmental Biology,2012,365(1):14-22.
[41]di Mambro R,Sabatini S,Dello I R. Patterning the axes:a lesson from the root[J]. Plants,2018,8(1):8.
[42]di Ruocco G,di Mambro R,Dello I R. Building the differences:a case for the ground tissue patterning in plants[J]. Proceedings Biological Sciences,2018,285(1890):20181746.
[43]Krishnamurthy P,Ranathunge K,Franke R,et al. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.)[J]. Planta,2009,230(1):119-134.
[44]Krishnamurthy P,Ranathunge K,Nayak S,et al. Root apoplastic barriers block Na+transport to shoots in rice (Oryza sativa L.)[J]. Journal of Experimental Botany,2011,62(12):4215-4228.
[45]Kotula L,Ranathunge K,Schreiber L,et al. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution[J]. Journal of Experimental Botany,2009,60(7):2155-2167.
[46]Ranathunge K,Lin J X,Steudle E,et al. Stagnant deoxygenated growth enhances root suberization and lignifications,but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots[J]. Plant,Cell & Environment,2011,34(8):1223-1240.
[47]Ranathunge K,Schreiber L,Bi Y M,et al. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots[J]. Planta,2016,243(1):231-249.
[48]Shiono K,Ogawa S,Yamazaki S,et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths[J]. Annals of Botany,2011,107(1):89-99.
[49]Henry S,Divol F,Bettembourg M,et al. Immunoprofiling of rice root cortex reveals two cortical subdomains[J]. Frontiers in Plant Science,2015,6:1139.
[50]Meyer C J,Seago J J,Peterson C A. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots[J]. Annals of Botany,2009,103(5):687-702.
[51]Zhang X,Hu L J,Yang C D,et al. Structural features of Phalaris arundinacea in the Jianghan Floodplain of the Yangtze River,China[J]. Flora,2017,229:100-106.
[52]Seago Jr. J L,Peterson C A,Enstone D E,et al. Development of the endodermis and hypodermis of Typha glauca Godr. and T. angustifolia L. roots[J]. Canadian Journal of Botany,1999,77(1):122-134.
[53]Husakova E,Hochholdinger F,Soukup A. Lateral root development in the maize (Zea mays) lateral rootless1 mutant[J]. Annals of Botany,2013,112(2):417-428.
[54]Tylová E,Pecková E,Blascheová Z,et al. Casparian bands and suberin lamellae in exodermis of lateral roots:an important trait of roots system response to abiotic stress factors[J]. Annals of Botany,2017,120(1):71-85.
[55]Dowd T G,Braun D M,Sharp R E. Maize lateral root developmental plasticity induced by mild water stress. Ⅰ:Genotypic variation across a high-resolution series of water potentials[J]. Plant,Cell & Environment,2019,42(7):2259-2273.
[56]ottniková A,Lux A. Development,dilation and subdivision of cortical layers of gentian (Gentiana asclepiadea) root[J]. New Phytologist,2003,160:135-143.
[57]Mesjasz-Przybyowicz J,Barnabas A,Przybyowicz W. Comparison of cytology and distribution of nickel in roots of Ni-hyperaccumulating and non-hyperaccumulating genotypes of Senecio coronatus[J]. Plant & Soil,2007,293:61-78.
[58]Mesjasz-Przybyowicz J,Barnabas A,Przybyowicz W J. Root ultrastructure of Senecio coronatus genotypes differing in Ni uptake[J]. Northeastern Naturalist,2009,16:351-365.
[59]Chapple C S,Peterson R L. Root structure in the fern Platycerium bifurcatum (Cav.) C.Chr.(Polypodiaceae)[J]. Botanical Gazette,1987,148(2):180-187.
[60]Damus M,Peterson R L,Enstone D E,et al. Modifications of cortical cell walls in roots of seedless vascular plants[J]. Plant Biology,1997,110(2):190-195.
[61]Schneider H. Root anatomy of Aspleniaceae and the implications for systematics of this fern family[J]. Fern Gazette,1997,15:160-168.
[62]Leroux O,Bagniewska-Zadworna A,Rambe S K,et al. Non-lignified helical cell wall thickenings in root cortical cells of Aspleniaceae (Polypodiales):histology and taxonomical significance[J]. Annals of Botany,2011,107(2):195-207.
[63]Hernández M A,Teran L,Mata M,et al. Helical cell wall thickenings in root cortical cells of Polypodiaceae species from Northwestern Argentina[J]. The American Fern Journal,2013,103(4):225-240.
[64]Neira D A,Andrada A R,Páez V D L ,et al. Anatomical,histochemical and cytogenetic features of Doryopteris triphylla (Pteridaceae) [J]. American Journal of Plant Sciences,2017,8(4):907-920.
[65]Wetzel M L R,Sylvestre L D S,Barros C F,et al. Vegetative anatomy of Aspleniaceae newman from Brazilian Atlantic rainforest and its application in taxonomy[J]. Flora,2017,233:118-126.
[66]Lagoria M ,Avila G,Neira D A,et al. Morphoanatomical and histochemical characteristics of the epiphytic fern Pleopeltis macrocarpa (Polypodiaceae)[J]. Brazilian Journal of Botany,2018,41(3):739-750.
[67]Wu D,Li L B,Ma X B,et al. Morphological and anatomical adaptations to dry,shady environments in Adiantum reniforme var. sinense (Pteridaceae)[J]. PeerJ-Life & Environment,2020,8:e9937.
[68]Skene K R,Sutherland J M,Raven J A,et al. Cluster root development in Grevillea robusta (Proteaceae). Ⅱ. The development of the endodermis in a determinate root and in an indeterminate,lateral root[J]. New Phytologist,1998,138(4):733-742.
[69]Shane M W,Lambers H. Cluster roots:a curiosity in context[J]. Plant and Soil,2005,274(1):101-125.
[70]Vaculík M,Konlechner C,Langer I,et al. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities[J]. Environmental Pollution,2012,163:117-126.
[71]Kowalski V K,de Oliveira F M C,Voltolini C H,et al. Velamen or uniseriate epidermis? Root apices in Bromeliaceae Juss[J]. Flora,2019,250:9-17.
[72]Nii N,Ohtsuka S,Ye L H,et al. Formation of endodermis-like cells with Casparian strip and thick wall cells derived from pericycle in the roots of Feijoa sellowiana (Myrtaceae)[J]. Journal of the Japanese Society for Horticultural Science,2012,81(4):314-319.
[73]van de Mortel J E,Almar V L,Schat H,et al. Large expression differences in genes for iron and zinc homeostasis,stress response,and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens[J]. Plant Physiology,2006,142(3):1127-1147.
[74]Aleamotua M,Tai Y T,McCurdy D W,et al. Developmental biology and induction of phi thickenings by abiotic stress in roots of the brassicaceae[J]. Plants,2018,7(2):47.
[75]Song Y,Ye L H,Nii N. Effects of soil water availability on development of suberin lamellae in the endodermis and exodermis and on cortical cell wall thickening in red bayberry (Myrica rubra Sieb.et Zucc.)tree roots[J]. Scientia Horticulturae,2011,129(4):554-560.
[76]Tuladhar A,Ohtsuka S,Nii N. Formation of exclusive pattern during accumulation of ligno-suberic material in cell wall of Myrtaceae root tissues including epidermis,exodermis,endodermis and polyderm[J]. Plant Root,2014,8:24-32.
[77]Tuladhar A,Ohtsuka S,Nii N. Anatomical study on wax apple (Syzygium samarangense) roots under long-term water-logged conditions[J]. Tropical Agriculture Development,2015,59:1-6.
[78]Mackenzie K. The development of the endoder mis and phi layer of apple roots[J]. Protoplasma,1979,100(1):21-32.
[79]Peterson C A,Emanu M E,Weerdenbu C A. The permeabiiity of phi thickenings in apple (Pyrus malus) and geranium (Pelargonium hortorum) roots to an apopiastic fluorescent dye tracer[J]. Canadian Journal of Botany,1981,59(6):1107-1110.
[80]Weerdenburcg C A,Peterson C A. Structural changes in phi thickenings during primary and secondary growth in roots. Ⅰ. Apple (Pyrus malus) Rosaceae[J]. Canadian Journal of Botany,1983,61(10):2570-2576.
[81]Christodoulakis N S,Psaras G K. A contribution to the root study of the evergreen sclerophyllous anatomy of the primary root of Quercus coccifera L.[J]. Flora,1988,180(5/6):445-453.
[82]Gerrath J M,Matthes U,Purich M,et al. Root environmental effects on phi thickening production and root morphology in three gymnosperms[J]. Canadian Journal of Botany,2005,83(4):379-385.
[83]Nii N,Pan C X,Ogawa Y,et al. Anatomical features of the cell wall ingrowth in the cortical cells outside the endodermis and the development of the Casparian strip in loquat roots[J]. Japanese Society for Horticultural Science,2004,73(5):411-414.
[84]Soukup A,Malá J,Hrubcová M,et al. Differences in anatomical structure and lignin content of roots of pedunculate oak and wild cherry-tree plantlets during acclimation[J]. Biologia Plantarum,2004,48(4):481-489.
[85]López-Pérez L,Fernández-García N,Olmos E,et al. The phi thickening in roots of broccoli plants:an adaptation mechanism to salinity?[J]. International Journal of Plant Sciences,2007,168(8):1141-1149.
[86]Bonacorsi N K,Seago J J. Root development and structure in seedlings of Ginkgo biloba[J]. American Journal of Botany,2016,103(2):355-363.
[87]Song C W,Shen W W,Du L,et al. Development and chemical characterization of Casparian strips in the roots of Chinese fir (Cunninghamia lanceolata)[J]. Trees,2019,33(3):827-836.
[88]Kitin P B,Nakaba S,Hunt C G,et al. Direct fluorescence imaging of lignocellulosic and suberized cell walls in roots and stems[J]. AoB PLANTS,2020,12(4):plaa032.
[89]Joca T A C,de Oliveira D C,Zotz G,et al. Chemical composition of cell walls in velamentous roots of epiphytic Orchidaceae[J]. Protoplasma,2020,257(1):103-118.
[90]Haas D L,Carothers Z B,Robbins R R. Observations on the phi-thickenings and casparian strips in Pelargonium roots[J]. American Journal of Botany,1976,63(6):863-867.
[91]Peterson R L,Peterson C A,Meiville L H. Teaching plant anatomy through creative laboratory exercise[M]. Ottawa,Ontartio:NRC Press,2008.
[92]Perumalla C J,Peterson C A,Enstone D E. A survey of angiosperm species to detect hypodermal Casparian bands. Ⅰ. Roots with a uniseriate hypodermis and epidermis[J]. Botanical Journal of the Linnean Society,1990,103(2):93-112.
[93]Wilcox H E,Wang C J K. Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month-old tree seedlings[J]. Canadian Journal of Forest Research,1987,17(8):884-899.
[94]Massicotte H B,Melville L H,Peterson R L,et al. Comparative studies of ectomycorrhiza formation in Alnus glutinosa and Pinus resinosa with Paxillus involutus[J]. Mycorrhiza,1999,8(5):229-240.
[95]de Menezes N L. Rhizophores in Rhizophora mangle L:an alternative interpretation of so-called “aerial roots”[J]. Anais da Academia Brasileira de Ciências,2006,78(2):213-226.
[96]Tajima R,Abe J,Lee O N,et al. Developmental changes in peanut root structure during root growth and root-structure modification by nodulation[J]. Annals of Botany,2008,101(4):491-499.
[97]Souza I C,Morozesk M,Duarte I D,et al. Matching pollution with adaptive changes in mangrove plants by multivariate statistics. A case study,Rhizophora mangle from four neotropical mangroves in Brazil[J]. Chemosphere,2014,108:115-124.
[98]Henrique P D C,Alves J D,Goulart P D F P,et al. Physiological and anatomical characteristics of Sibipiruna plants under hipoxia[J]. Ciência Rural,2010,40(1):70-76.
[99]Lopez-Perez L,Fernández-García N,Olmos E,et al. The phi thickening in roots of broccoli plants:an acclimation mechanism to salinity?[J] International Journal of Plant Sciences,2007,168(8):1141-1149.
[100]Pan C X,Nakao Y,Nii N. Anatomical development of phi thickening and the Casparian strip in loquat roots[J]. Japanese Society for Horticultural Science,2006,75(6):445-449.
[101]Degenhardt B,Gimmler H. Cell wall adaptations to multiple environmental stresses in maize roots[J]. Journal of Experimental Botany,2000,51(344):595-603.
[102]Brundrett M C,Enstone D,Peterson C A. A berberine-aniline blue fluorescent staining procedure for suberin,lignin,and callose in plant tissue[J]. Protoplasma,1988,146(2):133-142.
[103]Brundrett M C,Kendrick B,Peterson C A. Efficient lipid staining in plant material with sudan red 7B or fluorol [correction of fluoral]yellow 088 in polyethylene glycol-glycerol[J]. Biotechnic & Histochemistry,1991,66(3):111-116.
[104]Ruzin S E. Plant microtechnique and microscopy[M]. New York:Oxford University Press,1999.
[105]张霞,胡露洁,周存宇,等. 植物细胞壁组织化学定位染色方法和技术的比较研究[J]. 植物研究,2017,37(1):147-154.
[106]Idris N A,Collings D A. The Life of phi:the development of phi thickenings in roots of the orchids of the genus Miltoniopsis[J]. Planta,2015,241(2):489-506.
[107]Fajardo A,Piper F I. Cluster root-bearing Proteaceae species show a competitive advantage over non-cluster root-bearing species[J]. Annals of Botany,2019,124(6):1121-1131.
[108]Milner M J,Mitani-Ueno N,Yamaji N,et al. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation[J]. Plant Journal,2014,78(3):398-410.
[109]白宏锋,李晓明. 超积累植物壶瓶碎米荠的镉富集[J]. 江苏农业学报,2012,28(1):76-79.
[110]龙胜桥,邵树勋. 渔塘坝壶瓶碎米荠超富集镉的地球化学特征[J]. 矿物学报,2015,35(增刊1):817.
[111]Li N N,Xie W W,Zhou X B,et al. Comparative effects on nutritional quality and selenium metabolism in two ecotypes of Brassica rapa exposed to selenite stress[J]. Environmental & Experimental Botany,2018,150:222-231.
[112]Wang J M,Cappa J J,Harris J P,et al. Transcriptome-wide comparison of selenium hyperaccumulator and nonaccumulator Stanleya species provides new insight into key processes mediating the hyperaccumulation syndrome[J]. Plant Biotechnology Journal,2018,16(9):1582-1594.
[113]吴振斌. 水生植物与水体生态修复[M]. 北京:科学出版社,2011.
[114]刘海琴,高运强,宋伟,等. 水花生去除富营养化水体中氮磷及抑藻效果的实验研究[J]. 现代农业科学,2008,15(12):89-92.
[115]朱泽聪,胡春华,胡维平.水花生投放密度对富营养化湖水净化效果影响的试验研究[J]. 海洋湖沼通报,2008(4):49-55.
[116]Chang R Y,Wang R Q,Zhang Y R,et al. Effects of N ∶P ratio and nutrient level on the competition between invasive Alternanthera philoxeroides and native Oenanthe javanica[J]. Advanced Materials Research,2012,534:337-342.
[117]Liao J X,Tao M,Jiang M X. Spatial arrangements affect suppression of invasive Alternanthera philoxeroides by native Hemarthria compressa[J]. Acta Oecologica,2014,59:46-51.
[118]Wang A,Jiang X X,Zhang Q Q,et al. Nitrogen addition increases intraspecific competition in the invasive wetland plant Alternanthera philoxeroides,but not in its native congener Alternanthera sessilis[J]. Plant Species Biology,2015,30(3):176-183.
[119]Lu L,Dong B C,Alpert P,et al. Effects of soil substrate heterogeneity and moisture on interspecific competition between Alternanthera philoxeroides and four native species[J]. Journal of Plant Ecology,2016,10(3):528-537.
[120]Wu H,Ismail M,Ding J Q. Global warming increases the interspecific competitiveness of the invasive plant alligator weed,Alternanthera philoxeroides[J]. Science of the Total Environment,2017,575:1415-1422.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-10-15
基金项目:湿地生态与农业利用教育部工程研究中心开放基金(编号:KFT202004)。
作者简介:张霞(1981—),女,湖北天门人,硕士,讲师,主要从事湿地植物结构与生理研究。E-mail:zhang.yang07@aliyun.com。
通信作者:杨朝东,博士,副教授,主要从事湿地植物生理生态研究。E-mail:546728708@qq.com。
更新日期/Last Update: 2021-07-20