[1]李洪,蒋龙志,何思妤. 农村相对贫困识别体系与监测预警机制研究——来自四川省X县的数据[J]. 农村经济,2020,457(11):69-78.
[2]范和生. 返贫预警机制构建探究[J]. 中国特色社会主义研究,2018,139(1):57-63.
[3]罗丽. 基于随机森林算法的贫困精准识别模型研究[J]. 华中农业大学学报(社会科学版),2019,144(6):21-29,160.
[4]杨瑚. 返贫预警机制研究[D]. 兰州:兰州大学,2019.
[5]Ermon S. Combining satellite imagery and machine learning to predict poverty[J]. Science,2016(6301):790-794.
[6]梁骁,张明,覃琳. 一种基于机器学习识别贫困人口的数据分析方法研究[J]. 企业科技与发展,2017,427(5):39-41.
[7]魏嫣娇,易叶青. 基于多源机器学习的脱贫方式智能推荐研究[J]. 信息与电脑(理论版),2019,420(2):37-39,44.
[8]张浩. 提升农村地区精准扶贫效率的多维贫困识别方法[J]. 农村经济与科技,2020,31(6):199-200.
[9]余昕,汪早容. “后扶贫时代”返贫问题及对策[J]. 中国经贸导刊(中),2021,992(1):109-111.
[10]Chen T,Guestrin C. Xgboost:A scalable tree boosting system[C]//Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining(Association for Computing Machinery),2016:785-794.
[11]Ke G,Meng Q,Finley T,et al. Lightgbm:A highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems,2017,30:3146-3154.
[12]Dorogush A V,Ershov V,Gulin A. Catboost:Gradient boosting with categorical features support[J]. Arxiv E-prints,2018.
[13]岳鹏,侯凌燕,杨大利,等. 基于XGBoost特征选择的疾病诊断XLC-Stacking方法[J]. 计算机工程与应用,2020,56(17):136-141.
[14]陈维刚,张会林. 基于RF-LightGBM算法在风机叶片开裂故障预测中的应用[J]. 电子测量技术,2020,43(1):162-168.
[1]孙长兰,林海峰.一种基于集成学习的苹果叶片病害检测方法[J].江苏农业科学,2022,50(20):41.
Sun Changlan,et al.An apple tree leaf disease detection method based on ensemble learning[J].Jiangsu Agricultural Sciences,2022,50(17):41.
[2]章广传,李彤,何云,等.基于迁移模型集成的马铃薯叶片病害识别方法[J].江苏农业科学,2023,51(15):216.
Zhang Guangchuan,et al.A method for identifying potato leaf diseases based on migration model integration[J].Jiangsu Agricultural Sciences,2023,51(17):216.
[3]张留亚,袁德宝,范雨晴.基于集成学习的大豆叶绿素含量估算[J].江苏农业科学,2025,53(5):281.
Zhang Liuya,et al.Estimation of soybean chlorophyll content based on ensemble learning[J].Jiangsu Agricultural Sciences,2025,53(17):281.