|本期目录/Table of Contents|

[1]孙玥,杨秀荣,郭彦丽,等.水稻基因组任意区间InDel标记开发方法[J].江苏农业科学,2022,50(1):34-39.
 Sun Yue,et al.Development of InDel markers for arbitrary region of rice genome[J].Jiangsu Agricultural Sciences,2022,50(1):34-39.
点击复制

水稻基因组任意区间InDel标记开发方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第1期
页码:
34-39
栏目:
生物技术
出版日期:
2022-01-05

文章信息/Info

Title:
Development of InDel markers for arbitrary region of rice genome
作者:
孙玥杨秀荣2郭彦丽1李军玲1李月娇2孙淑琴路信刘燕清佟卉<孙林静刘静妍张融雪王晓静苏京平王胜军赵习朴闫双勇
1.天津市农业科学院农作物研究所/天津市农作物遗传育种重点实验室,天津 300384;2.天津市农业科学院植物保护研究所,天津 300384
Author(s):
Sun Yueet al
关键词:
水稻分子标记开发高通量测序QTL定位(QTL-seq)InDel标记多态频率
Keywords:
-
分类号:
S511.01
DOI:
-
文献标志码:
A
摘要:
基于极端表型单株高通量测序的定位方法QTL-seq已成为植物QTL分析的一种主要方法。继QTL-seq分析后,对目标QTL定位区间进行分子标记开发时,由于目标区间大,所含变异位点多,特定区间的分子标记开发仍是一件较繁琐的事。为提高特定区间分子标记开发的效率,本研究建立了基于高通量测序数据基础的特定脚本程序,可简单快速地完成水稻基因组任意区间的InDel标记开发。本研究开发了来自7个不同作图群体和染色体区间的有8 bp以上片段长度差异的InDel标记708个,平均每17.6 kb有1个InDel标记;对95个标记进行试验验证,总体多态频率为63%。本研究建立的方法在水稻及其他已测序的植物重要农艺性状控制QTL的分子标记辅助育种、精细定位和图位克隆中有重要应用价值。
Abstract:
-

参考文献/References:

[1]Terauchi R,Mitsuoka C,Tamiru M,et al. QTL-seq:rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations[J]. The Plant Journal,2013,74(1):174-183.
[2]Zobaida L,Antonio R,Partha T,et al. QTL-seq reveals a major root-knot nematode resistance locus on chromosome 11 in rice (Oryza sativa L.)[J]. Euphytica,2019,215:117.
[3]Chen Q,Song J,Du W P,et al. Identification and genetic mapping for rht-DM,a dominant dwarfing gene in mutant semi-dwarf maize using QTL-seq approach[J]. Genes & Genomics,2018,40:1091-1099.
[4]Lu H,Lin T,Klein J,et al. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber[J]. Theoretical and Applied Genetics,2014,127(7):1491-1499.
[5]Jena S S,Veeraghattapu R,Vemireddy L R,et al. QTL-Seq-based genetic analysis identifies a major genomic region governing dwarfness in rice (Oryza sativa L.)[J]. Plant Cell Report,2018,37(4):677-687.
[6]Arikit S,Wanchana S,Khanthong S,et al. QTL-seq identifies cooked grain elongation QTLs near soluble starch synthase and starch branching enzymes in rice(Oryza sativa L.)[J]. Scientific Reports,2019,9(1):8328.
[7]Nubankoh P,Wanchana S,Saensuk C,et al. QTL-seq reveals genomic regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.)[J]. Plant Cell Report,2020,39(1):149-162.
[8]Kodama A,Narita R,Yamaguchi M,et al. QTLs maintaining grain fertility under salt stress detected by exome QTL-seq and interval mapping in barley[J]. Breeding Science,2018,68(5):561-570.
[9]Yoshitsu Y,Takakusagi M,Abe A,et al. QTL-seq analysis identifies two genomic regions determining the heading date of foxtail millet,Setaria italic (L.) P.Beauv.[J]. Breeding Science,2017,67(5):518-527.
[10]Itoh N,Segawa T,Tamiru M,et al. Next-generation sequencing-based bulked segregant analysis for QTL mapping in the heterozygous species Brassica rapa[J]. Theoretical and Applied Genetics,2019,132(10):2913-2925.
[11]Illa-Berenguer E,Houten J V,Huang Z,et al. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq[J]. Theoretical and Applied Genetics,2015,128(7):1329-1342.
[12]Luo H,Pandey M K,Khan A W,et al. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.)[J]. Plant Biotechnology Journal,2019,17(7):1248-1260.
[13]Pandey M K,Khan A W,Singh V K,et al. QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.)[J]. Plant Biotechnology Journal,2017,15(8):927-941.
[14]Mansfeld B N,Grumet R. QTLseqr:An R Package for bulk segregant analysis with next-generation sequencing[J]. The Plant Genome,2018,11(2):180006.
[15]Wu S L,Qiu J,Gao Q K. QTL-BSA:A bulked segregant analysis and visualization pipeline for QTL-seq[J]. Interdisciplinary Sciences,2019,11(4):730-737.
[16]Josh C,Chu Y,Carolina C,et al. Mapping late leaf spot resistance in peanut (Arachis hypogaea) using QTL-seq reveals markers for marker-assisted selection[J]. Frontiers in Plant Science,2018,9:83.
[17]Zhang X,Zhang K,Wu J,et al. QTL-seq and sequence assembly rapidly mapped the gene BrMYBL2.1 for the purple trait in Brassica rapa[J]. Scientific Reports,2020,10(1):2328.
[18]Danecek P,Auton A,Abecasis G,et al. The variant call format and VCFtools[J]. Bioinformatics,2011,27(15):2156-2158.
[19]Kim S R,Ramos J,Ashikari M,et al. Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice,Oryza sativa L.[J]. Rice,2016,9(1):12.
[20]Xin Z,Velten J P,Oliver M J,et al. High-throughput DNA extraction method suitable for PCR[J]. Biotechniques,2003,34(4):820-826.
[21]Kawahara Y,Bastide M,Hamilton J P,et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data[J]. Rice,2013,6(1):4.
[22]Sakai H,Lee S S,Tanaka T,et al. Rice Annotation Project Database (RAP-DB):an integrative and interactive database for rice genomics[J]. Plant and Cell Physiology,2013,54(2):e6.
[23]Koressaar T,Remm M. Enhancements and modifications of primer design program Primer3[J]. Bioinformatics,2007,23(10):1289-1291.
[24]Ertiro B T,Ogugo V,Worku M,et al. Comparison of Kompetitive Allele Specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize[J]. BMC Genomics,2015,16(1):908.
[25]Jiao Y,Peluso P,Shi J,et al. Improved maize reference genome with single-molecule technologies[J]. Nature,2017,546(7659):524-527.
[26]Ling H Q,Ma B,Shi X,et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu[J]. Nature,2018,557(7705):424-428.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(1):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(1):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(1):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(1):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(1):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(1):90.

备注/Memo

备注/Memo:
收稿日期:2021-04-08
基金项目:国家重点研发计划(编号:2017YFD0100506);天津市支撑计划(编号:18YFZCNC01210);天津市自然科学基金(编号:19JCYBJC29500);天津市水稻现代农业产业技术体系创新团队项目(编号:ITTRRS2018015)。
作者简介:孙玥(1982—),女,吉林长春人,博士,副研究员,主要从事作物栽培生理研究,E-mail:13102091103@163.com;共同第一作者:杨秀荣(1972—),女,天津武清人,硕士,副
更新日期/Last Update: 2022-01-05