[1]黄红娟,张朝贤,姜翠兰,等. 北疆棉田杂草多样性及群落组成[J]. 杂草学报,2020,38(1):7-13.
[2]付瑞霞,王俊平,董立尧. 防除稻麦连作小麦田主要杂草的高活性除草剂室内筛选[J]. 杂草学报,2020,38(1):68-73.
[3]郭云忠,胡杰,李思娟,等. 陕西关中灌区麦田杂草发生规律及防治指标[J]. 杂草学报,2021,39(1):38-42.
[4]毛文华,王一鸣,张小超,等. 基于机器视觉的田间杂草识别技术研究进展[J]. 农业工程学报,2004,20(5):43-46.
[5]颜秉忠. 机器视觉技术在玉米苗期杂草识别中的应用[J]. 农机化研究,2018,40(3):212-216.
[6]Lottes P,Hrferlin M,Sander S,et al. Effective vision-based classification for separating sugar beets and weeds for precision farming[J]. Journal of Field Robotics,2017,34(6):1160-1178.
[7]Peteinatos G G,Reichel P,Karouta J,et al. Weed identification in maize,sunflower,and potatoes with the aid of convolutional neural networks[J]. Remote Sensing.2020,12(24):4185-4185
[8]Wang Z B,Li H L,Zhu Y,et al. Review of plant identification based on image processing[J]. Archives of Computational Methods in Engineering,2017,24(3):637-654.
[9]Rojas C P,Guzmán L S,Toledo N F V. Weed recognition by SVM texture feature classification in outdoor vegetable crops images[J]. Ingeniería e Investigación,2017,37(1):68.
[10]张新明,涂强,冯梦清. 基于改进概率神经网络的玉米与杂草识别[J]. 山西大学学报(自然科学版),2015,38(3):432-438.
[11]袁洪波,赵努东,程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报,2020,51(增刊2):323-334.
[12]齐秀杰. 探讨水稻病虫害防治技术与对策[J]. 农民致富之友,2019(5):66.
[13]郑加强,徐幼林. 环境友好型农药喷施机械研究进展与展望[J]. 农业机械学报,2021,52(3):1-16.
[14]寇思荣. 甘肃省玉米产业现状及玉米育种方向探讨[J]. 甘肃科技,2018,34(4):6-8.
[15]高立强,杨家荣,张彦龙,等. 几种除草剂减量施用防除玉米田杂草的效果[J]. 杂草学报,2020,38(4):31-38.
[16]齐飞,朱明,周新群,等. 农业工程与中国农业现代化相互关系分析[J]. 农业工程学报,2015,31(1):1-10.
[17]刘金浩,王春燕,王宇航,等. 带农作物识别功能的无人机农药喷洒系统的研究[J]. 农业灾害研究,2020,10(7):185-186.
[18]Shelhamer E,Long J,Darrell T.Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651.
[19]Zeiler M D,Taylor G W,Fergus R.Adaptive deconvolutional networks for mid and high level feature learning[C]//2011 International Conference on Computer Vision,November 6-13,2011,Barcelona:IEEE,2011:2018-2025.
[20]Mane D T,Kulkarni U V. Visualizing and understanding customized convolutional neural network for recognition of handwritten marathi numerals[J]. Procedia Computer Science,2018,132:1123-1137.
[21]Chollet F. Deep learning with Python[M]. 张亮,译. 北京:人民邮电出版社,2018:110-111.
[22]Simonyan K,Zisserman A.Very deep convolutional networks for large-scale image recognition[J]. Computer Science,2014,36(v1):1409-1425.
[23]Dolz J,Ben Ayed I,Desrosiers C.Dense multi-path U-net for ischemic stroke lesion segmentation in multiple image modalities[M]//Brainlesion:glioma,multiple sclerosis,stroke and traumatic brain injuries. Cham:Springer International Publishing,2019:271-282.
[24]余心杰,王昊,李彧,等. 一种基于全卷积神经网络的对虾养殖残饵计数方法:CN110826592A[P]. 2020-02-21.
[25]王琛,徐维超. 人脸识别准确率与图像参数关系比较分析[J]. 电子世界,2019(5):89-91.
[1]胡盈盈,王瑞燕,郭鹏涛,等.基于近地光谱特征的玉米田间杂草识别研究[J].江苏农业科学,2020,48(8):242.
Hu Yingying,et al.Recognition of weeds in maize fields based on near-earth spectrum characteristics[J].Jiangsu Agricultural Sciences,2020,48(6):242.
[2]徐聪,王旭启,刘裕.一种改进可形变FCN的农作物害虫检测方法[J].江苏农业科学,2022,50(9):211.
Xu Cong,et al.An improved deformable FCN method for detection of field crop pest[J].Jiangsu Agricultural Sciences,2022,50(6):211.
[3]杨德龙,李婧.基于注意力与小平方核的ConvNeXt农业杂草识别方法[J].江苏农业科学,2024,52(14):207.
Yang Delong,et al.ConvNeXt agricultural weed recognition method based on attention and small square kernel[J].Jiangsu Agricultural Sciences,2024,52(6):207.
[4]高发瑞,古华宁,张巧玲,等.基于农业大数据和深度学习的稻田杂草识别[J].江苏农业科学,2024,52(18):215.
Gao Farui,et al.Identification of weeds in rice field based on agricultural big data and deep learning[J].Jiangsu Agricultural Sciences,2024,52(6):215.
[5]黄友锐,王小桥,韩涛,等.基于改进YOLO v8n的甜菜杂草检测算法研究[J].江苏农业科学,2024,52(24):196.
Huang Yourui,et al.A detection method for sugar beets and weeds based on improved YOLO v8n algorithm[J].Jiangsu Agricultural Sciences,2024,52(6):196.