|本期目录/Table of Contents|

[1]杨东轩,吴叶兰,张刚刚,等.基于边缘计算与深度学习的禽舍监测系统设计[J].江苏农业科学,2022,50(9):219-225.
 Yang Dongxuan,et al.Design of poultry house monitoring system based on edge computing and deep learning[J].Jiangsu Agricultural Sciences,2022,50(9):219-225.
点击复制

基于边缘计算与深度学习的禽舍监测系统设计(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第9期
页码:
219-225
栏目:
农业工程与信息技术
出版日期:
2022-05-05

文章信息/Info

Title:
Design of poultry house monitoring system based on edge computing and deep learning
作者:
杨东轩12吴叶兰23张刚刚4刘硕5
1.北京工商大学电商与物流学院,北京100048; 2.北京工商大学中国轻工业工业互联网与大数据重点实验室,北京100048;3.北京工商大学人工智能学院,北京100048; 4.首都师范大学数字校园建设中心,北京100048;5.中国安全生产科学研究院,北京100012
Author(s):
Yang Dongxuanet al
关键词:
深度学习边缘计算禽舍环境氨气浓度监测电路设计
Keywords:
-
分类号:
TP277
DOI:
-
文献标志码:
A
摘要:
恶臭气体是影响禽舍内禽类个体健康和产蛋效率的重要因素。由于传统的监测设备具有较长的气体浓度响应时间,导致无法及时对污染物的排放做出检测,设计并实现可以预测氨气浓度变化的禽舍监测系统,选用低成本的电化学传感器和低功耗Wi-Fi微控制器设计终端监测器。为了克服电化学传感器易受其他环境因素影响的缺点,监测器还集成硫化氢浓度、二氧化碳浓度以及温湿度等传感器。由于禽舍生产经营属性对成本较敏感,选用性价比较高的边缘计算硬件作为服务器。在该服务器对监测器上传的采集数据进行预处理,最终通过提出的Bi-LSTM模型使用多传感器参数预测未来一段时间内氨气的浓度值。经过参数调优和对比训练,该系统对禽舍内氨气浓度的预测值与采集值均方误差仅为3.29%,以期为接下来的减排措施提供有效的数据支撑。
Abstract:
-

参考文献/References:

[1]时凯,陈长宽,卞红春,等. 不同养殖模式及光照度对蛋鸡产蛋率的影响[J]. 江苏农业科学,2016,44(2):254-255.
[2]于群,柳平增,李宝全,等. 基于MSP430的禽舍智能控制系统设计及应用[J]. 江苏农业科学,2018,46(9):236-240.
[3]刘忠超,范伟强,常有周,等. 基于ZigBee和Android的牛舍环境远程监测系统设计[J]. 黑龙江畜牧兽医,2018(17):61-64,234.
[4]牛培培,张总平,贡玉清,等. 规模养殖氨气监测及控制技术[J]. 畜牧与兽医,2021,53(8):137-141.
[5]王琳,吉增涛,李文勇,等. 信息技术在家禽精细养殖应用中的研究进展[J]. 中国家禽,2017,39(12):48-53.
[6]Chanonsirivorakul R,Nimsuk N. Analysis of relationship between the response of ammonia gas sensor and odor perception in human[C]//8th International Electrical Engineering Congress.Chiang Mai,2020:1-4.
[7]段文杰,胡月明,陈联诚,等. 基于云计算技术的家禽养殖管理系统研究与实现[J]. 广东农业科学,2014,41(1):165-168.
[8]姬舒,刘幸,闫锋欣,等. 物联网在蛋鸡生产中的应用及研究进展[J]. 中国家禽,2018,40(18):49-53.
[9]曾志雄,罗毅智,余乔东,等. 基于时间序列和多元模型的集约化猪舍温度预测[J]. 华南农业大学学报,2021,42(3):111-118.
[10]杨亮,刘春红,郭昱辰,等. 基于EMD-LSTM的猪舍氨气浓度预测研究[J]. 农业机械学报,2019,50(S1):353-360.
[11]左敏,薛明慧,张青川,等. 面向互联网食品文本实体关系联合抽取研究[J/OL]. 重庆邮电大学学报(自然科学版):1-8.[2021-10-19]. http://kns.cnki.net/kcms/detail/50.1181.N.20211011.1553.004.html.
[12]徐清越,左敏,张青川,等. 基于位置注意力机制的字词双维度卷积神经网络违法违规行为语义分类模型[J]. 科学技术与工程,2020,20(25):10341-10346.
[13]张杨,范颖,王哲,等. 基于可调谐激光吸收光谱技术的硫化氢检测方法研究[J]. 电子测量与仪器学报,2017,31(12):1943-1947.
[14]王雅,杨雨露,楚意月,等. 电催化氮还原催化剂的研究进展[J]. 化学研究,2019,30(5):532-536.
[15]陈岩,杨东轩,郭宏,等. 低功耗绿地墒情监测WSN节点[J]. 仪表技术与传感器,2012(7):107-110.
[16]罗俊,孙国耀. 基于WiFi无线传感器网络的工业环境监测平台系统设计[J]. 仪表技术与传感器,2018(8):65-68.
[17]杨东轩,刘硕,王嵩. 低功耗电子号牌在排队系统中的设计与实现[J]. 计算机应用与软件,2018,35(12):76-82.
[18]Hochreiter S,Schmidhuber J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780.

相似文献/References:

[1]梁万杰,曹宏鑫.基于卷积神经网络的水稻虫害识别[J].江苏农业科学,2017,45(20):241.
 Liang Wanjie,et al.Identification of rice insect pests based on CNN model[J].Jiangsu Agricultural Sciences,2017,45(9):241.
[2]赵建敏,李艳,李琦,等.基于卷积神经网络的马铃薯叶片病害识别系统[J].江苏农业科学,2018,46(24):251.
 Zhao Jianmin,et al.Potato leaf disease identification system based on convolutional neural network[J].Jiangsu Agricultural Sciences,2018,46(9):251.
[3]李懿超,沈润平,黄安奇.基于深度学习的湘赣鄂地区植被变化及其影响因子关系模型[J].江苏农业科学,2019,47(03):213.
 Li Yichao,et al.Study on relational model between vegetation change and its impact factors based on deep learning in Hunan, Jiangxi and Hubei areas[J].Jiangsu Agricultural Sciences,2019,47(9):213.
[4]刘嘉政.基于深度迁移学习模型的花卉种类识别[J].江苏农业科学,2019,47(20):231.
 Liu Jiazheng.Flower species identification based on deep transfer learning model[J].Jiangsu Agricultural Sciences,2019,47(9):231.
[5]荆伟斌,胡海棠,程成,等.基于深度学习的地面苹果识别与计数[J].江苏农业科学,2020,48(05):210.
 Jing Weibin,et al.Recognition and counting of ground apples based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(9):210.
[6]罗巍,陈曙东,王福涛,等.基于深度学习的大型食草动物种群监测方法[J].江苏农业科学,2020,48(20):247.
 Luo Wei,et al.Monitoring method of large herbivore population based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(9):247.
[7]孙孝龙,徐森,周卫阳,等.基于物联网和深度学习的养蚕智能监控系统设计[J].江苏农业科学,2020,48(21):241.
 Sun Xiaolong,et al.Design of an intelligent monitoring system for sericulture based on internet of things and deep learning[J].Jiangsu Agricultural Sciences,2020,48(9):241.
[8]康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学,2020,48(22):22.
 Kang Feilong,et al.Application technology of image recognition for various crop diseases and insect pests: a review[J].Jiangsu Agricultural Sciences,2020,48(9):22.
[9]李彧,余心杰,郭俊先.基于全卷积神经网络方法的玉米田间杂草识别[J].江苏农业科学,2022,50(6):93.
 Li Yu,et al.Weed recognition in corn field based on fully convolutional neural network (FCN) method[J].Jiangsu Agricultural Sciences,2022,50(9):93.
[10]孙东来,王继超,陈科,等.基于Ghost-YOLOv3-2算法的2尺度猪目标检测[J].江苏农业科学,2022,50(7):189.
 Sun Donglai,et al.Two-scale pig target detection based on Ghost-YOLOv3-2[J].Jiangsu Agricultural Sciences,2022,50(9):189.

备注/Memo

备注/Memo:
收稿日期:2021-10-20
基金项目:国家重点研发计划(编号:2016YFD0401205);北京市自然科学基金(编号:4202014)。
作者简介:杨东轩(1987—),男,北京人,硕士,实验师,主要从事无线传感器网络研究。E-mail:yangdongxuan@btbu.edu.cn。
通信作者:张刚刚,硕士,工程师,主要从事智能信息系统研究。E-mail:zgg@cnu.edu.cn。
更新日期/Last Update: 2022-05-05