|本期目录/Table of Contents|

[1]年琳玉,王梦军,孙笑阳,等.碳中和技术研究进展及对农业碳减排的展望[J].江苏农业科学,2022,50(11):1-13.
 Nian Linyu,et al.Research progress of carbon neutrality technology and the prospect for agricultural carbon emission reduction[J].Jiangsu Agricultural Sciences,2022,50(11):1-13.
点击复制

碳中和技术研究进展及对农业碳减排的展望(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第11期
页码:
1-13
栏目:
专论与综述
出版日期:
2022-06-05

文章信息/Info

Title:
Research progress of carbon neutrality technology and the prospect for agricultural carbon emission reduction
作者:
年琳玉 王梦军 孙笑阳 曹崇江
国家中药材加工技术研发中心/中国药科大学工学院,江苏南京 211198
Author(s):
Nian Linyuet al
关键词:
CO2捕集封存与转化技术研究进展农业碳中和展望碳减排
Keywords:
-
分类号:
S181
DOI:
-
文献标志码:
A
摘要:
为了控制全球气候变化所带来的影响,《巴黎协定》提出将全球平均气温上升限制在1.5 ℃。要实现这一目标亟须解决CO2排放量攀升的问题,并部署CO2净零排放的技术。其中农业碳排放约占全球温室气体排放总量的1/3,因此推进农业领域减排固碳技术是发展农业碳中和的重要举措。本文主要介绍了CO2捕集、封存及转化技术的研究进展,具体包括:利用化学、材料领域的物理化学等方法对CO2进行捕集,并通过光电催化技术对CO2进行高效转化;地质、海洋封存CO2并通过矿物合成方法实现碳的循环再利用;微生物细胞工厂基于合成生物学技术将CO2转化为燃料及化学物质,并对其在农业碳中和上的研究方向进行展望,以期为碳中和技术在农业中的应用提供理论依据和参考。
Abstract:
-

参考文献/References:

[1]Lu X,Cao L A,Wang H K,et al. Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(17):8206-8213.
[2]van Vuuren D P,Stehfest E,Gernaat D E H J,et al. Alternative pathways to the 1.5 ℃ target reduce the need for negative emission technologies[J]. Nature Climate Change,2018,8(5):391-397.
[3]Tubiello F N,Rosenzweig C,Conchedda G,et al. Greenhouse gas emissions from food systems:building the evidence base[J]. Environmental Research Letters,2021,16(6):065007.
[4]齐晔,李惠民,王晓. 农业与中国的低碳发展战略[J]. 中国农业科学,2012,45(1):1-6.
[5]Adeel M,Zain M,Shafi J,et al. Conservation agriculture,a way to conserve soil carbon for sustainable agriculture productivity and mitigating climate change:a review[J]. 2018,27(9):6297-6308
[6]曹丽花,刘合满,杨东升. 农田土壤固碳潜力的影响因素及其调控[J]. 江苏农业科学,2016,44(10):16-20.
[7]乐小芳,陈佳淳,苗璐. 农业土壤碳汇研究综述[J]. 农业与技术,2020,40(22):8-10.
[8]徐永辉,肖宝华,冯艳艳,等. 二氧化碳捕集材料的研究进展[J]. 精细化工,2021,38(8):1513-1521.
[9]Liu M S,Hohenshil A,Gadikota G. Integrated CO2 capture and removal via carbon mineralization with inherent regeneration of aqueous solvents[J]. Energy & Fuels,2021,35(9):8051-8068.
[10]李琦,蔡博峰,陈帆,等. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程,2019,37(2):13-21.
[11]王凯,刘子鹤,陈必强,等. 微生物利用二氧化碳合成燃料及化学品:第三代生物炼制[J]. 合成生物学,2020,1(1):60-70.
[12]李美洁,夏青青,Harwood C S,等. 沼泽红假单胞菌作为微生物细胞工厂的应用[J]. 生物加工过程,2020,18(1):27-34.
[13]胡贵鹏. CO2封存工程改造微生物生产L-苹果酸[D]. 无锡:江南大学,2020:1-13.
[14]尚杰,杨果,于法稳. 中国农业温室气体排放量测算及影响因素研究[J]. 中国生态农业学报,2015,23(3):354-364.
[15]梅明灿. CO2在离子液体中化学和物理吸收量定量方法的建立[D]. 上海:华东理工大学,2021:1-3.
[16]邬高翔,田瑞. 二氧化碳捕集技术研究进展[J]. 云南化工,2020,47(4):22-23.
[17]Ahmadi M,Gomes V G,Ngian K.Advanced modelling in performance optimization for reactive separation in industrial CO2 removal[J]. Separation and Purification Technology,2008,63(1):107-115.
[18]Pasha M,Li G X,Shang M J,et al. Mass transfer and kinetic characteristics for CO2 absorption in microstructured reactors using an aqueous mixed amine[J]. Separation and Purification Technology,2021,274:118987.
[19]Wang M J,Nian L Y,Cheng Y L,et al. Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer[J]. Chemical Engineering Journal,2021,426(1):130832.
[20]Bhatt P M,Belmabkhout Y,Cadiau A,et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption[J]. Journal of the American Chemical Society,2016,138(29):9301-9307.
[21]Ma H,Wang Z G,Zhang X F,et al. In situ growth of amino-functionalized ZIF-8 on bacterial cellulose foams for enhanced CO2 adsorption[J]. Carbohydrate Polymers,2021,270(8):118376.
[22]徐国芬,董杰,赵昕,等. 聚酰亚胺/ZIF-8复合气凝胶的制备及二氧化碳吸附性能[J]. 高分子材料科学与工程,2020,36(12):90-96,102.
[23]Murge P,Dinda S,Roy S. Zeolite-based sorbent for CO2 capture:preparation and performance evaluation[J]. Langmuir,2019,35(46):14751-14760.
[24]Qiang Z Q,Li R,Yang Z Q,et al. Zeolite X adsorbent with high stability synthesized from bauxite tailings for cyclic adsorption of CO2[J]. Energy & Fuels,2019,33(7):6641-6649.
[25]Bacariza M C,Amjad S,Teixeira P,et al. Boosting Ni dispersion on zeolite-supported catalysts for CO2 methanation:the influence of the impregnation solvent[J]. Energy & Fuels,2020,34(11):14656-14666.
[26]Tejavath V,Kasarabada V,Gonuguntla S,et al. Technoeconomic investigation of amine-grafted zeolites and their kinetics for CO2 capture[J]. ACS Omega,2021,6(9):6153-6162.
[27]Heidarinejad Z,Dehghani M H,Heidari M,et al. Methods for preparation and activation of activated carbon:a review[J]. Environmental Chemistry Letters,2020,18(2):393-415.
[28]朱赛. 表面改性对活性炭物理、化学性质及CO2吸附性能的影响[D]. 郑州:郑州大学,2010:9-10.
[29]郭慧娴,李水娥,张勇,等. 改性活性炭对烟气中CO2吸附性能的影响[J]. 湿法冶金,2020,39(2):156-159.
[30]Shahkarami S,Dalai A K,Soltan J. Enhanced CO2 adsorption using MgO-impregnated activated carbon:impact of preparation techniques[J]. Industrial & Engineering Chemistry Research,2016,55(20):5955-5964.
[31]Woolf D,Amonette J E,Street-Perrott F A,et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications,2010,1(1):1-9.
[32]Wang J L,Wang S Z. Preparation,modification and environmental application of biochar:a review[J]. Journal of Cleaner Production,2019,227:1002-1022.
[33]刘清涛. PEI改性生物炭的制备及对CO2吸附性能的评价[J]. 环境科学学报,2021,41(3):932-939.
[34]王立春,马丽萍,彭雨惠,等. 氧化石墨烯修饰蔗渣生物炭吸附CO2的研究[J]. 化工新型材料,2020,48(7):108-113.
[35]Warmuzinski K,Tanczyk M,Jaschik M. Experimental study on the capture of CO2 from flue gas using adsorption combined with membrane separation[J]. International Journal of Greenhouse Gas Control,2015,37:182-190.
[36]Lei L F,Bai L,Lindbrthen A,et al. Carbon membranes for CO2 removal:status and perspectives from materials to processes[J]. Chemical Engineering Journal,2020,401:126084.
[37]Cao Y H,Zhang K A,Sanyal O,et al. Carbon molecular sieve membrane preparation by economical coating and pyrolysis of porous polymer hollow fibers[J]. Angewandte Chemie International Edition,2019,58(35):12149-12153.
[38]杨珍珍,刘志敏. 功能型微孔有机聚合物吸附及催化转化CO2研究进展[J]. 中国科学(化学),2016,46(10):973-993.
[39]Rungta M,Zhang C,Koros W J,et al. Membrane-based ethylene/ethane separation:the upper bound and beyond[J]. AIChE Journal,2013,59(9):3475-3489.
[40]沈钦. 高性能自具微孔聚合物气体分离膜的设计与性能研究[D]. 郑州:郑州大学,2019:36-46.
[41]何荣荣. 基于多孔有机聚合物的混合基质膜及气体分离性能优化[D]. 郑州:郑州大学,2020:2-3.
[42]尚景宏,臧毅华,罗林军,等. 改性石墨烯材料掺杂聚酰亚胺制备混合基质膜分离CO2/N2[J]. 膜科学与技术,2021,41(3):98-104.
[43]彦晶晶,陈丙晨,白云翔,等. 用于CO2/N2分离的氧化石墨烯量子点混合基质膜的制备及性能研究[J]. 化工新型材料,2020,48(5):90-94.
[44]吕碧洪,金佳佳,张莉,等. 有机胺溶液吸收CO2的研究现状及进展[J]. 石油化工,2011,40(8):803-809.
[45]陈兵,肖红亮,李景明,等. 二氧化碳捕集、利用与封存研究进展[J]. 应用化工,2018,47(3):589-592.
[46]薛博,刘勇,王沉,等. 碳捕获、封存与利用技术及煤层封存CO2研究进展[J]. 化学世界,2020,61(4):294-297.
[47]孙玉景,周立发,李越. CO2海洋封存的发展现状[J]. 地质科技情报,2018,37(4):212-218.
[48]Eccles J K,Pratson L. Global CO2 storage potential of self-sealing marine sedimentary strata[J]. Geophysical Research Letters,2012,39(19):L19604.
[49]Marieni C,Matter J M,Teagle D A H. Experimental study on mafic rock dissolution rates within CO2-seawater-rock systems[J]. Geochimica et Cosmochimica Acta,2020,272:259-275.
[50]Buesseler K O,Andrews J E,Pike S M,et al. The effects of iron fertilization on carbon sequestration in the southern ocean[J]. Science,2004,304(5669):414-417.
[51]Ji L,Yu H,Zhang R J,et al. Effects of fly ash properties on carbonation efficiency in CO2 mineralisation[J]. Fuel Processing Technology,2019,188:79-88.
[52]Liu W,Su S,Xu K,et al. CO2 sequestration by direct gas-solid carbonation of fly ash with steam addition[J]. Journal of Cleaner Production,2018,178:98-107.
[53]Fagerlund J,Teir S,Nduagu E,et al. Carbonation of magnesium silicate mineral using a pressurised gas/solid process[J]. Energy Procedia,2009,1(1):4907-4914.
[54]Olajire A A. A review of mineral carbonation technology in sequestration of CO2[J]. Journal of Petroleum Science and Engineering,2013,109:364-392.
[55]绳昊一,吕莉,梁斌,等. 焙烧温度对硅酸钙矿化CO2的影响[J]. 矿产综合利用,2015(5):76-80.
[56]Wang T,Huang H,Hu X T,et al. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate[J]. Chemical Engineering Journal,2017,323:320-329.
[57]Huang H,Guo R N,Wang T,et al. Carbonation curing for wollastonite-Portland cementitious materials:CO2 sequestration potential and feasibility assessment[J]. Journal of Cleaner Production,2019,211:830-841.
[58]任国宏,廖洪强,吴海滨,等. 粉煤灰、电石渣及其配合物碳酸化特性[J]. 环境工程学报,2018,12(8):2295-2300.
[59]包炜军,李会泉,张懿. 强化碳酸化固定CO2反应过程分析与机理探讨[J]. 化工学报,2009,60(9):2332-2338.
[60]GCCSI. Bioenergy and carbon capture and storage[R]. Sydney:Global CCS Institute,2019:1-14.
[61]樊静丽,李佳,晏水平,等. 我国生物质能-碳捕集与封存技术应用潜力分析[J]. 热力发电,2021,50(1):7-17.
[62]常世彦,郑丁乾,付萌. 2 ℃/1.5 ℃温控目标下生物质能结合碳捕集与封存技术(BECCS)[J]. 全球能源互联网,2019,2(3):277-287.
[63]许辰宇,林伽毅,潘富强,等. Ni离子替位掺杂TiO2增强光热化学循环还原CO2研究[J]. 化学学报,2017,75(7):699-707.
[64]许辰宇. 光热协同催化分解H2O和CO2制备燃料反应动力学及能量转化[D]. 杭州:浙江大学,2018:10-11.
[65]Romero M,Steinfeld A. Concentrating solar thermal power and thermochemical fuels[J]. Energy & Environmental Science,2012,5(11):9234-9245.
[66]Novaes L F T,Liu J J,Shen Y F,et al. Electrocatalysis as an enabling technology for organic synthesis[J]. Chemical Society Reviews,2021,50(14):7941-8002.
[67]Siltamaki D,Chen S,Rahmati F,et al. Synthesis and electrochemical study of CuAu nanodentrites for CO2 reduction[J]. Journal of Electrochemistry,2021,27(3):278-292.
[68]Yi J D,Si D H,Xie R K,et al. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2[J]. Angewandte Chemie International Edition,2021,60(31):17108-17114.
[69]Nasalevich M A,Becker R,Ramos-Fernandez E V,et al. Co@NH2-MIL-125(Ti):cobaloxime-derived metal-organic framework-based composite for light-driven H2 production[J]. Energy & Environmental Science,2015,8(1):364-375.
[70]Jiang Z,Xu X H,Ma Y H,et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction[J]. Nature,2020,586(7830):549-554.
[71]Kong Z C,Liao J F,Dong Y J,et al. Core@ shell CsPbBr3@ zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction[J]. ACS Energy Letters,2018,3(11):2656-2662.
[72]Tian F Y,Zhang H L,Liu S,et al. Visible-light-driven CO2 reduction to ethylene on CdS:enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating[J]. Applied Catalysis(B:Environmental),2021,285:119834.
[73]刘剑豪. 等离子体催化氢气和甲烷还原CO2[D]. 大连:大连理工大学,2017:10-14.
[74]Nizio M,Albarazi A,Cavadias S,et al. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts[J]. International Journal of Hydrogen Energy,2016,41(27):11584-11592.
[75]Mikhail M,da Costa P,Amouroux J,et al. Tailoring physicochemical and electrical properties of Ni/CeZrOx doped catalysts for high efficiency of plasma catalytic CO2 methanation[J]. Applied Catalysis(B:Environmental),2021,294:120233.
[76]Dinakaran J,Rao K S. Carbon sequestration in terrestrial vegetation and soils:a review[J]. Phytomorphology,2012,62(3/4):177-188.
[77]Jiménez J J,Lal R.Mechanisms of C sequestration in soils of Latin America[J]. Critical Reviews in Plant Sciences,2006,25(4):337-365.
[78]Nunes L J R,Meireles C I R,Pinto Gomes C J,et al. Forest contribution to climate change mitigation:management oriented to carbon capture and storage[J]. Climate,2020,8(2):21-42.
[79]Moomaw W R,Masino S A,Faison E K. Intact forests in the United States:proforestation mitigates climate change and serves the greatest good[J]. Frontiers in Forests and Global Change,2019,2:27-37.
[80]Cox P M,Betts R A,Jones C D,et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature,2000,408(6809):184-187.
[81]Harmon M E. Have product substitution carbon benefits been overestimated?A sensitivity analysis of key assumptions[J]. Environmental Research Letters,2019,14(6):065008.
[82]Venkata M S,Modestra J A,Amulya K,et al. A circular bioeconomy with biobased products from CO2 sequestration[J]. Trends in Biotechnology,2016,34(6):506-519.
[83]Angermayr S A,Gorchs R A,Hellingwerf K J. Metabolic engineering of cyanobacteria for the synthesis of commodity products[J]. Trends in Biotechnology,2015,33(6):352-361.
[84]Qiao K J,Wasylenko T M,Zhou K,et al. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism[J]. Nature Biotechnology,2017,35(2):173-177.
[85]Schuchmann K,Müller V.Autotrophy at the thermodynamic limit of life:a model for energy conservation in acetogenic bacteria[J]. Nature Reviews Microbiology,2014,12(12):809-821.
[86]Wijffels R H,Barbosa M J. An outlook on microalgal biofuels[J]. Science,2010,329(5993):796-799.
[87]Claassens N J,Sousa D Z,dos Santos V A P M,et al. Harnessing the power of microbial autotrophy[J]. Nature Reviews Microbiology,2016,14(11):692-706.
[88]von Borzyskowski L S,Carrillo M,Leupold S,et al. An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1[J]. Metabolic Engineering,2018,47:423-433.
[89]Jones S W,Fast A G,Carlson E D,et al. CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion[J]. Nature Communications,2016,7(1):1-9.
[90]Hu G P,Li Y,Ye C,et al. Engineering microorganisms for enhanced CO2 sequestration[J]. Trends in Biotechnology,2019,37(5):532-547.
[91]Zhang Y W,Zhou J A,Zhang Y C,et al. Auxiliary module promotes the synthesis of carboxysomes in E.coli to achieve high-efficiency CO2 assimilation[J]. ACS Synthetic Biology,2021,10(4):707-715.
[92]Saini R,Kapoor R,Kumar R,et al. CO2 utilizing microbes—a comprehensive review[J]. Biotechnology Advances,2011,29(6):949-960.
[93]Liang F Y,Lindblad P. Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803[J]. Metabolic Engineering,2016,38:56-64.
[94]Liang F Y,Englund E,Lindberg P,et al. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio[J]. Metabolic Engineering,2018,46:51-59.
[95]Huber H,Gallenberger M,Jahn U,et al. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(22):7851-7856.
[96]Gong F Y,Liu G X,Zhai X Y,et al. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation[J]. Biotechnology for Biofuels,2015,8(1):1-10.
[97]Brown S H,Bashkirova L,Berka R,et al. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid[J]. Applied Microbiology and Biotechnology,2013,97(20):8903-8912.
[98]Xiong W,Lee T C,Rommelfanger S,et al. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria[J]. Nature Plants,2015,2(1):1-8.
[99]Bar-Even A,Noor E,Lewis N E,et al. Design and analysis of synthetic carbon fixation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(19):8889-8894.
[100]Wu G,Yan Q A,Jones J A,et al. Metabolic burden:cornerstones in synthetic biology and metabolic engineering applications[J]. Trends in Biotechnology,2016,34(8):652-664.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-07-28
基金项目:国家重点研发计划(编号:2019YFC1605804)。
作者简介:年琳玉(1993—),女,安徽蚌埠人,博士,主要从事新型智能食品包装材料研制及农产品精准碳调控技术研究。E-mail:nianlinyu0305@163.com。
通信作者:曹崇江,博士,教授,主要从事新型智能食品包装材料研制及在果蔬保鲜品质的精准调控研究。E-mail:ccj33@163.com。
更新日期/Last Update: 2022-06-05