[1]黄慧琼. 遏止全球土壤退化刻不容缓[J]. 生态经济,2021,37(2):5-8.
[2]郑译儒,赵俊超,龚束芳,等. NaHCO3和Na2CO3胁迫对碱茅和披碱草种子萌发、幼苗生长和生理指标的影响[J]. 中国科学院大学学报,2021,38(2):228-239.
[3]李书鑫,杨文莹,朱先灿,等. 丛枝菌根真菌提高植物抵御低温胁迫能力的生理机制研究进展[J]. 生态与农村环境学报,2019,35(12):1516-1523.
[4]张春楠,张瑞芳,王红,等. 丛枝菌根真菌影响作物非生物胁迫耐受性的研究进展[J]. 微生物学通报,2020,47(11):3880-3891.
[5]Kong L,Gong X W,Zhang X L,et al. Effects of arbuscular mycorrhizal fungi on photosynthesis,ion balance of tomato plants under saline-alkali soil condition[J]. Journal of Plant Nutrition,2020,43(5):682-698.
[6]Cao Y P,Wu X F,Zhukova A,et al. Arbuscular mycorrhizal fungi (AMF) species and abundance exhibit different effects on saline-alkaline tolerance in Leymus chinensis[J]. Journal of Plant Interactions,2020,15(1):266-279.
[7]Abdel-Salam E,Alatar A,El-Sheikh M A.Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose[J]. Saudi Journal of Biological Sciences,2018,25(8):1772-1780.
[8]李晓曼,王建军. 丛枝菌根真菌对镍胁迫桂花幼苗光合作用及抗氧化酶活性的影响[J]. 江苏农业科学,2019,47(21):223-227.
[9]金微微,张会慧,滕志远,等. 盐碱互作胁迫对高丹草叶片叶绿素荧光参数的影响[J]. 草业科学,2017,34(10):2090-2098.
[10]Hasanuzzaman M,Raihan M R H,Masud A A C,et al. Regulation of reactive oxygen species and antioxidant defense in plants under salinity[J]. International Journal of Molecular Sciences,2021,22(17):9326.
[11]胡爱双,张小栋,郭文静,等. 盐胁迫下八棱海棠株系的离子吸收、运输与分配[J]. 植物生理学报,2021,57(9):1829-1838.
[12]周艳,刘慧英,邓嘉欣,等. GSH/GSSG对盐胁迫下番茄幼苗谷胱甘肽化修饰和抗氧化系统的影响[J]. 分子植物育种,2021,19(6):1995-2003.
[13]Chen W,Feng C,Guo W,et al. Comparative effects of osmotic-,salt-and alkali stress on growth,photosynthesis,and osmotic adjustment of cotton plants[J]. Photosynthetica,2011,49(3):417-425.
[14]毛恋,芦建国,江海燕. 植物响应盐碱胁迫的机制[J]. 分子植物育种,2020,18(10):3441-3448.
[15]Guo L Q,Shi D C,Wang D L.The key physiological response to alkali stress by the alkali-resistant Halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere[J]. Journal of Agronomy and Crop Science,2010,196(2):123-135.
[16]刘奕媺,于洋,方军. 盐碱胁迫及植物耐盐碱分子机制研究[J]. 土壤与作物,2018,7(2):201-211.
[17]Bao Y,Wang J X,Chen C,et al. Effects of NaCl and NaHCO3 stress on photosynthesis and chlorophyll fluorescence characteristics of Hemerocallis fulva ‘Golden Doll’[J]. Agricultural Biotechnology,2020,9(3):18-25,28.
[18]Aliasgharzad N,Rastin S N,Towfighi H,et al. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil[J]. Mycorrhiza,2001,11(3):119-122.
[19]岳英男. 松嫩盐碱草地主要丛枝菌根真菌对植物耐盐性影响的研究[D]. 哈尔滨:东北林业大学,2015.
[20]Dashtebani F,Hajiboland R,Aliasgharzad N.Characterization of salt-tolerance mechanisms in mycorrhizal (Claroideoglomus etunicatum) halophytic grass,Puccinellia distans[J]. Acta Physiologiae Plantarum,2014,36(7):1713-1726.
[21]马朋坤. 丛枝菌根真菌对盐碱化湿地土壤上碱蓬生长的影响研究[D]. 呼和浩特:内蒙古大学,2016.
[22]付红丽. 丛枝菌根真菌对松嫩草地羊草耐盐性的影响[D]. 长春:东北师范大学,2018.
[23]贾冰冰,周昕南,丁胜利,等. 接种丛枝菌根真菌对不同类型盐碱胁迫下向日葵生长及盐离子积累的影响[J]. 华南农业大学学报,2021,42(3):45-54.
[24]Qiu Y J,Zhang N L,Zhang L L,et al. Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity[J]. Physiological and Molecular Plant Pathology,2020,112:101522.
[25]郑亚茹,唐明. 丛枝菌根真菌对盐胁迫下桑树生长及光合特性的影响[J]. 蚕业科学,2020,46(6):669-677.
[26]Yang X Y,Li H Y,Jiang L,et al. Effects of arbuscular mycorrhiza fungi on the growth characteristics,root morphology,and ion distribution of Pyrus betulaefolia Bunge under saline-alkaline stress[J]. Forest Science,2019:97-104.
[27]叶林. 丛枝菌根真菌对西瓜盐碱胁迫的缓解效应及其调控机理[D]. 杨凌:西北农林科技大学,2019.
[28]Abdel Latef A A H,He C X.Effect of arbuscular mycorrhizal fungi on growth,mineral nutrition,antioxidant enzymes activity and fruit yield of tomato grown under salinity stress[J]. Scientia Horticulturae,2011,127(3):228-233.
[29]Amanifar S,Toghranegar Z.The efficiency of arbuscular mycorrhiza for improving tolerance of Valeriana officinalis L.and enhancing valerenic acid accumulation under salinity stress[J]. Industrial Crops and Products,2020,147:112234.
[30]Amanifar S,Khodabandeloo M,Mohseni Fard E,et al. Alleviation of salt stress and changes in glycyrrhizin accumulation by arbuscular mycorrhiza in liquorice (Glycyrrhiza glabra) grown under salinity stress[J]. Environmental and Experimental Botany,2019,160:25-34.
[31]Reginato M,Cenzano A M,Arslan I,et al. Na2SO4 and NaCl salts differentially modulate the antioxidant systems in the highly stress tolerant halophyte Prosopis strombulifera[J]. Plant Physiology and Biochemistry,2021,167:748-762.
[32]Hajiboland R,Aliasgharzadeh N,Laiegh S F,et al. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants[J]. Plant and Soil,2010,331(1/2):313-327.
[33]Hashem A,Alqarawi A A,Radhakrishnan R,et al. Arbuscular mycorrhizal fungi regulate the oxidative system,hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L.[J]. Saudi Journal of Biological Sciences,2018,25(6):1102-1114.
[34]赵霞,叶林,纳学伟,等. 盐碱胁迫下丛枝菌根真菌对紫花苜蓿渗透调节物质及抗氧化能力的影响[J]. 江苏农业学报,2017,33(4):782-787.
[35]张爱娣,郑仰雄,黄东兵. 丛枝菌根真菌对大叶女贞耐盐性的影响[J]. 江苏农业科学,2018,46(19):129-133.
[36]Garg N,Bhandari P.Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity[J]. Protoplasma,2016,253(5):1325-1345.
[37]Ren C G,Kong C C,Yan K,et al. Transcriptome analysis reveals the impact of arbuscular mycorrhizal symbiosis on Sesbania cannabina expose to high salinity[J]. Scientific Reports,2019,9:2780.
[38]Chen J,Zhang H Q,Zhang X L,et al. Arbuscular mycorrhizal symbiosis mitigates oxidative injury in black locust under salt stress through modulating antioxidant defence of the plant[J]. Environmental and Experimental Botany,2020,175:104034.
[39]Palma J M,Longa M A,Delrío L A,et al. Superoxide dismutase in vesicular arbuscular-mycorrhizal red clover plants[J]. Physiologia Plantarum,1993,87(1):77-83.
[40]Zhou Y,Tang N Y,Huang L J,et al. Effects of salt stress on plant growth,antioxidant capacity,glandular trichome density,and volatile exudates of Schizonepeta tenuifolia Briq[J]. International Journal of Molecular Sciences,2018,19(1):252.
[41]韩冰. 丛枝菌根真菌(AMF)对黄瓜植株盐胁迫伤害的缓解及其生理效应研究[D]. 南京:南京农业大学,2011.
[42]Jiang Y N,Xie Q J,Wang W X,et al. Medicago AP2-domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis[J]. Molecular Plant,2018,11(11):1344-1359.
[43]Wang Y N,Lin J X,Huang S C,et al. Isobaric tags for relative and absolute quantification-based proteomic analysis of Puccinellia tenuiflora inoculated with arbuscular mycorrhizal fungi reveal stress response mechanisms in alkali-degraded soil[J]. Land Degradation & Development,2019,30(13):1584-1598.
[44]赵怀玉,林鸿宣. 植物响应盐碱胁迫的分子机制[J]. 土壤与作物,2020,9(2):103-113.
[45]Shi S M,Chen K,Gao Y,et al. Arbuscular mycorrhizal fungus species dependency governs better plant physiological characteristics and leaf quality of mulberry (Morus alba L.) seedlings[J]. Frontiers in Microbiology,2016,7:1030.
[46]刘洪光. AM真菌提高枸杞耐盐性的机制研究[D]. 杨凌:西北农林科技大学,2016.
[47]Evelin H,Kapoor R.Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants[J]. Mycorrhiza,2014,24(3):197-208.
[48]韦莉莉,卢昌熠,丁晶,等. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J]. 生态学报,2016,36(14):4233-4243.
[49]Yang C X,Zhao W N,Wang Y N,et al. Metabolomics analysis reveals the alkali tolerance mechanism in Puccinellia tenuiflora plants inoculated with arbuscular mycorrhizal fungi[J]. Microorganisms,2020,8(3):327.
[50]郝晓燕,李建平,高升旗,等. 盐角草P5CS基因克隆及其在高盐胁迫下的表达分析[J]. 分子植物育种,2021,19(2):469-477.
[51]Kesari R,Lasky J R,Villamor J G,et al. Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(23):9197-9202.
[52]Kishor P,Hong Z,Miao G H,et al. Overexpression of[delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants[J]. Plant Physiology,1995,108(4):1387-1394.
[53]吴娜. 丛枝菌根真菌(AMF)对青杨雌株和雄株耐盐性影响的研究[D]. 杨凌:西北农林科技大学,2018.
[54]缑天韵,苏艳,陈馨航,等. 硅促进盐胁迫下黄瓜NHX1基因表达及Na+在液泡中的区隔化效应[J]. 植物营养与肥料学报,2020,26(11):1923-1934.
[55]张永兰,解莉楠. HKT1在植物耐盐机制中的研究进展[J]. 生物技术通报,2021,37(6):213-224.
[56]陈婕. 丛枝菌根真菌(AMF)提高刺槐耐盐性机制的研究[D]. 杨凌:西北农林科技大学,2018.
[57]Porcel R,Aroca R,Azcon R,et al. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution[J]. Mycorrhiza,2016,26(7):673-684.
[58]Lin H X,Yang Y Q,Quan R D,et al. Phosphorylation of sos3-like calcium binding protein8 by sos2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis[J]. Plant Cell,2009,21(5):1607-1619.
[59]秦晓惠,段志坤. 植物盐胁迫的信号调控机制[J]. 基因组学与应用生物学,2019,38(8):3706-3713.
[60]Zhang X H,Han C Z,Gao H M,et al. Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress[J]. Plant Physiology and Biochemistry,2019,141:20-29.
[61]Zhang J L,Shi H Z.Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research,2013,115(1):1-22.
[62]Zhang W D,Wang P,Bao Z,et al. SOS1,HKT1;5,and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora[J]. Frontiers in Plant Science,2017,8:576.
[63]Chen S C,Zhao H J,Zou C C,et al. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth,nutrient uptake and photosynthesis in cucumber seedlings[J]. Frontiers in Microbiology,2017,8:2516.
[64]Gong X Q,Zhang J Y,Liu J H.A stress responsive gene of Fortunella crassifolia FcSISP functions in salt stress resistance[J]. Plant Physiology and Biochemistry,2014,83:10-19.
[65]Hadian-Deljou M,Esna-Ashari M,Mirzaie-asl A.Alleviation of salt stress and expression of stress-responsive gene through the symbiosis of arbuscular mycorrhizal fungi with sour orange seedlings[J]. Scientia Horticulturae,2020,268:109373.
[66]Igiehon N O,Babalola O O.Biofertilizers and sustainable agriculture:exploring arbuscular mycorrhizal fungi[J]. Applied Microbiology and Biotechnology,2017,101(12):4871-4881.
[67]Wang J P,Zhai L,Ma J Y,et al. Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of Zelkova serrata[J]. Mycorrhiza,2020,30(2/3):341-355.
[68]Fiorilli V,Lanfranco L,Bonfante P.The expression of GintPT,the phosphate transporter of Rhizophagus irregularis,depends on the symbiotic status and phosphate availability[J]. Planta,2013,237(5):1267-1277.
[69]曹庆芹,邓杰,朱丽静,等. ‘红颜’草莓菌根磷转运蛋白基因的克隆及荧光定量表达分析[J]. 园艺学报,2013,40(4):641-650.
[70]马志博. 菌根共生提高酸枣耐盐性机制研究[D]. 杨凌:西北农林科技大学,2020.
[71]Liu J J,Liu J L,Liu J H,et al. The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake[J]. Plant Physiology,2019,180(1):465-479.
[72]Yang C W,Jianaer A,Li C Y,et al. Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata[J]. Photosynthetica,2008,46(2):273-278.
[73]Rouphael Y,Cardarelli M,Mattia E,et al. Enhancement of alkalinity tolerance in two cucumber genotypes inoculated with an arbuscular mycorrhizal biofertilizer containing Glomus intraradices[J]. Biology and Fertility of Soils,2010,46(5):499-509.
[74]王明元,夏仁学,王鹏. 丛枝菌根真菌对枳不同根围铁及球囊霉素螯合金属的影响[J]. 福建农林大学学报(自然科学版),2010,39(1):42-46.
[75]王明元. 丛枝菌根真菌对柑橘铁吸收的效应及其作用机理[D]. 武汉:华中农业大学,2008.
[76]温小杰,张学勇,郝晨阳,等. 植物激素信号传导途径研究进展[J]. 中国农业科技导报,2010,12(6):10-17.
[77]Pozo M J,López-Ráez J A,Azcón-Aguilar C,et al. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses[J]. New Phytologist,2015,205(4):1431-1436.
[78]陈琪,程浩,李琴,等. 丛枝菌根真菌促进南美蟛蜞菊在低磷环境下的生长[J]. 江苏农业科学,2020,48(8):103-107.
[79]贺忠群,李焕秀,汤浩茹,等. 丛枝菌根真菌对NaCl胁迫下番茄内源激素的影响[J]. 核农学报,2010,24(5):1099-1104.
[80]García-Garrido J M,Lendzemo V,Castellanos-Morales V,et al. Strigolactones,signals for parasitic plants and arbuscular mycorrhizal fungi[J]. Mycorrhiza,2009,19(7):449-459.
[81]Yoneyama K,Xie X N,Sekimoto H,et al. Strigolactones,host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi,from Fabaceae plants[J]. New Phytologist,2008,179(2):484-494.
[82]Aroca R,Ruiz-Lozano J M,Zamarreo M,et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants[J]. Journal of Plant Physiology,2013,170(1):47-55.
[83]廖德华,刘俊丽,刘健健,等. 植物激素响应和调控丛枝菌根共生研究进展[J]. 植物营养与肥料学报,2016,22(6):1679-1689.
[84]Testerink C,Munnik T.Phosphatidic acid:a multifunctional stress signaling lipid in plants[J]. Trends in Plant Science,2005,10(8):368-375.
[85]焦德志,赵泽龙. 盐碱胁迫对植物形态和生理生化影响及植物响应的研究进展[J]. 江苏农业科学,2019,47(20):1-4.
[86]贾婷婷,常伟,范晓旭,等. 盐胁迫下AM真菌对沙枣苗木光合与叶绿素荧光特性的影响[J]. 生态学报,2018,38(4):1337-1347.
[87]Neelam S,Subramanyam R.Alteration of photochemistry and protein degradation of photosystem Ⅱ from Chlamydomonas reinhardtii under high salt grown cells[J]. Journal of Photochemistry and Photobiology B:Biology,2013,124:63-70.
[88]Ezz T M,Nawar A. Salinity and mycorrhizal association in relation to carbohydrate status,leaf chlorophyII and activity of peroxidase and polyphenol oxidase enzymes in sour orange seedlings[J]. Alexandria Journal of Agricultural Research,1994,39(1):263-280.
[89]袁丽环,闫桂琴. 丛枝菌根化翅果油树幼苗根际土壤微环境[J]. 植物生态学报,2010,34(6):678-686.
[90]刘振坤. 刺槐丛枝菌根真菌提高土壤营养和结构稳定性的研究[D]. 杨凌:西北农林科技大学,2013:17-18.
[91]Gresh N,Naseem-Khan S,Lagardère L,et al. Channeling through two stacked guanine quartets of one and two alkali cations in the Li+,Na+,K+,and Rb+ series. Assessment of the accuracy of the SIBFA anisotropic polarizable molecular mechanics potential[J]. Journal of Physical Chemistry B,2017,121(16):3997-4014.
[92]许盼云,吴玉霞,何天明. 植物对盐碱胁迫的适应机理研究进展[J]. 中国野生植物资源,2020,39(10):41-49.
[93]苟艳丽,张乐,郭欢,等. 植物AP2/ERF类转录因子研究进展[J]. 草业科学,2020,37(6):1150-1159.
[94]Meng L S,Wang Y B,Yao S Q,et al. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8[J]. Journal of Cell Science,2015,128(15):2919-2927.
[95]Xue L,Cui H T,Buer B,et al. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus[J]. Plant Physiology,2015,167(3):854-871.
[96]Floss D S,Levy J G,Lévesque-Tremblay V,et al. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences,2013,110(51):E5025-E5034.
[97]Delaux P M,Bécard G,Combier J P.NSP1 is a component of the Myc signaling pathway[J]. New Phytologist,2013,199(1):59-65.
[98]Nongpiur R C,Singla-Pareek S L,Pareek A.Genomics approaches for improving salinity stress tolerance in crop plants[J]. Current Genomics,2016,17(4):343-357.
[1]王小山,朱平华,鲍国成,等.盐碱胁迫对紫花苜蓿根、茎和叶重要养分离子平衡的影响[J].江苏农业科学,2013,41(07):190.
Wang Xiaoshan,et al.Effect of salt stress on important nutrient ion balance in roots,stems and leaves of Medicago sativa[J].Jiangsu Agricultural Sciences,2013,41(19):190.
[2]方淑梅,梁喜龙,纪伟波,等.外源NO对盐碱胁迫下水稻幼苗生长抑制的缓解作用[J].江苏农业科学,2013,41(08):67.
Fang Shumei,et al.Mitigative effect of exogenous nitric oxide on growth inhibition of rice seedlings under saline-alkali stress[J].Jiangsu Agricultural Sciences,2013,41(19):67.
[3]单成海.盐碱胁迫对洋葱部分理化特性的影响[J].江苏农业科学,2013,41(11):193.
Shan Chenghai.Effect of saline-alkaline stress on partial physicochemical properties of onion[J].Jiangsu Agricultural Sciences,2013,41(19):193.
[4]盖玉红,牛陆,董宝池,等.不同浓度盐、碱胁迫对野生大豆光合特性和生理生化特性的影响[J].江苏农业科学,2014,42(05):89.
Gai Yuhong,et al.Effects of saline alkali stress on photosynthetic characteristics and physiological-biochemical characteristics of wild soybean[J].Jiangsu Agricultural Sciences,2014,42(19):89.
[5]王光野,曹高品,丁娇,等.盐碱混合胁迫对灰绿藜丙二醛积累的影响[J].江苏农业科学,2014,42(09):354.
Wang Guangye,et al.Effect of mixed salinity-alkalinity stress on malondialdehyde accumulation of Chenopodium glaucum L.[J].Jiangsu Agricultural Sciences,2014,42(19):354.
[6]赵飞,蔡晓布.不同海拔高度对藏北高寒草甸丛枝菌根真菌的影响[J].江苏农业科学,2015,43(04):344.
Zhao fei,et al.Effect of different altitudes on arbuscular mycorrhizal fungi in northern Tibetan alpine meadow[J].Jiangsu Agricultural Sciences,2015,43(19):344.
[7]任禛,韩丽,张永福,等.不同丛枝菌根真菌对玉米生长生理的影响[J].江苏农业科学,2015,43(05):63.
Ren Zhen,et al.Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize[J].Jiangsu Agricultural Sciences,2015,43(19):63.
[8]王鑫,朱悦,刘滨硕,等.盐碱胁迫下羊草抗氧化酶活性的变化[J].江苏农业科学,2015,43(05):209.
Wang Xin,et al.Study on activities of antioxidant enzymes of Leymus chinensis under alkali-saline stress[J].Jiangsu Agricultural Sciences,2015,43(19):209.
[9]李波,陈雪梅,于海龙,等.混合盐碱胁迫对苜蓿种子萌发特性的影响[J].江苏农业科学,2015,43(08):221.
Li Bo,et al.Effect of mixed salt and alkali stress on seed germination of alfalfa[J].Jiangsu Agricultural Sciences,2015,43(19):221.
[10]李少朋,毕银丽,彭星.接种丛枝菌根真菌对矿井水回灌玉米生长的影响[J].江苏农业科学,2016,44(05):112.
Li Shaopeng,et al.Effects of inoculation with AMF on growth of maize after recharging with mining water[J].Jiangsu Agricultural Sciences,2016,44(19):112.