[1]Gui Y Y,Li W,Zhang M M,et al. Woodland segmentation of Gaofen-6 remote sensing images based on deep learning[C]//International Geoscience and Remote Sensing Symposium.Brussels,2021:5409-5412.
[2]Ghebrezgabher M G,Yang T B,Yang X M,et al. Extracting and analyzing forest and woodland cover change in Eritrea based on landsat data using supervised classification[J]. The Egyptian Journal of Remote Sensing and Space Science,2016,19(1):37-47.
[3]董新宇,李家国,陈瀚阅,等. 无人机遥感影像林地单株立木信息提取[J]. 遥感学报,2019,23(6):1269-1280.
[4]林双双,钟九生,何鑫,等. 光谱信息支持下城区林地信息提取方法[J]. 林业资源管理,2021(3):96-100.
[5]李恒,臧卓,唐宪. 基于遥感影像的林地变化检测方法[J]. 中南林业调查规划,2021,40(4):33-39,67.
[6]Cheng K,Wang J L. Forest type classification based on integrated spectral-spatial-temporal features and random forest algorithm—a case study in the Qinling Mountains[J]. Forests,2019,10(7):559.
[7]孙建国,艾廷华,王沛,等. 基于NDVI-气候变量特征空间的植被退化评价[J]. 武汉大学学报(信息科学版),2008,33(6):573-576.
[8]符雅盛,张利华,朱志儒,等. 基于决策树-山体阴影模型的植被信息提取研究[J]. 长江流域资源与环境,2020,29(2):386-393.
[9]熊静. 面向对象变化检测技术在林地分析中的应用[J]. 辽宁林业科技,2021(2):76-78.
[10]乔月霞,刘烽,谭来钱,等. 基于面向对象的林地信息提取与分类[J]. 温带林业研究,2019,2(2):25-33.
[11]杨飞,刘丽峰,王学成. 基于面向对象方法和SPOT5的丘陵山区林地分类研究[J]. 林业资源管理,2014(5):92-99.
[12]孙小丹. 基于语义相关的面向对象林地信息提取[J]. 福建林业科技,2009,36(3):36-40.
[13]侯逸晨,赵鹏祥,杨伟志,等. 基于SVM的资源三号影像林地分类及精度评价研究[J]. 西北林学院学报,2016,31(1):180-185.
[14]刘晓娜,封志明,姜鲁光. 基于决策树分类的橡胶林地遥感识别[J]. 农业工程学报,2013,29(24):163-172,365.
[15]Hinton G E,Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504-507.
[16]Long J,Shelhamer E,Darrell T. Fully convolutional networks for semantic segmentation[C]//Conference on Computer Vision and Pattern Recognition.Boston,2015:3431-3440.
[17]Zhang C,Sargent I,Pan X,et al. An object-based convolutional neural network (OCNN) for urban land use classification[J]. Remote Sensing of Environment,2018,216:57-70.
[18]Kussul N,Lavreniuk M,Skakun S,et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters,2017,14(5):778-782.
[19]Schiefer F,Kattenborn T,Frick A,et al. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,170:205-215.
[20]Gui Y Y,Li W,Wang Y N,et al. Woodland detection using most-sure strategy to fuse segmentation results of deep learning[C]//International Geoscience and Remote Sensing Symposium.Yokohama,2019:6724-6727.
[21]Fang X Y,He X H,Wang L B,et al. Robust shadow detection by exploring effective shadow contexts[C]//Proceedings of the 29th ACM International Conference on Multimedia.New York:ACM,2021:2927-2935.
[22]Xie S N,Girshick R,Dollár P,et al. Aggregated residual transformations for deep neural networks[C]//Conference on Computer Vision and Pattern Recognition.Honolulu,2017:5987-5995.
[23]Kingma D P,Ba J. Adam:a method for stochastic optimization[C]//International Conference on Learning Representations,Lile,2015:1-15.
[24]Yuan Y H,Huang L,Guo J Y,et al. OCNet:object context for semantic segmentation[J]. International Journal of Computer Vision,2021,129(4):2375-2398.
[25]Yang M K,Yu K,Zhang C,et al. DenseASPP for semantic segmentation in street scenes[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,2018:3684-3692.
[26]Zhao H S,Shi J P,Qi X J,et al. Pyramid scene parsing network[C]//Conference on Computer Vision and Pattern Recognition.Honolulu,2017:6230-6239.
[27]Ronneberger O,Fischer P,Brox T. U-net:convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science.Cham:Springer International Publishing,2015:234-241.