[1]Aliasgharzad N,Bolandnazar S A,Neyshabouri M R,et al. Impact of soil sterilization and irrigation intervals on P and K acquisition by mycorrhizal onion (Allium cepa)[J]. Biologia,2009,64(3):512-515.
[2]李晓玉,赵文廷,白冬菊,等. 滨海盐碱地治理模式研究创新[J]. 农业技术与装备,2020(11):51-54.
[3]刘阳春,何文寿,何进智,等. 盐碱地改良利用研究进展[J]. 农业科学研究,2007,28(2):68-71.
[4]贾婷婷,宋福强. 丛枝菌根提高植物耐盐性的研究进展[J]. 土壤通报,2016,47(6):1499-1505.
[5]祝文婷,陈为京,陈建爱,等. 丛枝菌根真菌提高植物抗盐碱胁迫能力的研究进展[J]. 安徽农业科学,2013,41(5):2061-2062,2221.
[6]李芳,高萍,段廷玉. AM菌根真菌对非生物逆境的响应及其机制[J]. 草地学报,2016,24(3):491-500.
[7]Hallett P D,Feeney D S,Bengough A G,et al. Disentangling the impact of AM fungi versus roots on soil structure and water transport[J]. Plant and Soil,2008,314(1/2):183-196.
[8]叶林. 丛枝菌根真菌对西瓜盐碱胁迫的缓解效应及其调控机理[D]. 杨凌:西北农林科技大学,2019.
[9]Rillig M C,Mummey D L. Mycorrhizas and soil structure[J]. New Phytologist,2006,171(1):41-53.
[10]孙思淼,常伟,宋福强. 丛枝菌根真菌提高盐胁迫植物抗氧化机制的研究进展[J]. 应用生态学报,2020,31(10):3589-3596.
[11]王利民. 滨海盐土培肥改良利用技术及植物耐盐性研究[D]. 南京:南京林业大学,2010.
[12]Kaveh H,Nemati H,Farsi M,et al. How salinity affect germination and emergence of tomato lines[J]. J Biol Environ Sci,2011,5(15):159-163.
[13]苗昊翠,李利民,宋彬,等. NaCl胁迫对两种锦鸡儿种子萌发的影响[J]. 新疆农业科学,2011,48(3):498-503.
[14]李志萍,张文辉,崔豫川. NaCl和Na2CO3胁迫对栓皮栎种子萌发及幼苗生长的影响[J]. 生态学报,2015,35(3):742-751.
[15]聂江力,裴毅,冯丹丹. NaCl和NaHCO3胁迫对车前种子萌发的影响[J]. 北方园艺,2015(5):25-28.
[16]金樑,陈国良,赵银,等. 丛枝菌根对盐胁迫的响应及其与宿主植物的互作[J]. 生态环境,2007,16(1):228-233.
[17]Flexas J,Bota J,Galmés J,et al. Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress[J]. Physiologia Plantarum,2006,127(3):343-352.
[18]姜磊,李焕勇,张芹,等. AM真菌对盐碱胁迫下杜梨幼苗生长与生理代谢的影响[J]. 南京林业大学学报(自然科学版),2020,44(6):152-160.
[19]Li R L,Shi F C,Fukuda K,et al. Effects of salt and alkali stresses on germination,growth,photosynthesis and ion accumulation in alfalfa (Medicago sativa L.)[J]. Soil Science and Plant Nutrition,2010,56(5):725-733.
[20]李树华,米海莉,惠红霞,等. NaCl胁迫对小麦发芽的影响试验研究[J]. 宁夏农林科技,2000,41(6):11-13.
[21]马翠兰,刘星辉. 盐对柚幼苗的胁迫效应分析[J]. 热带作物学报,2004,25(1):28-31.
[22]谢潇,李瑞. 盐渍化对土性质的影响及其危害[J]. 科技创新与应用,2020(28):50-51.
[23]樊自立,马英杰,马映军. 中国西部地区的盐渍土及其改良利用[J]. 干旱区研究,2001,18(3):1-6.
[24]董莉莉,龚成霞,苏卫国. 浅谈盐碱地的修复改良[J]. 天津科技,2015,42(8):68-69,72.
[25]田平雅. 耐盐植物根际细菌多样性研究及促生菌筛选和复合菌群构建[D]. 银川:宁夏大学,2019.
[26]元炳成. 河西走廊干旱气候条件下盐渍土微生物生态研究[D]. 兰州:兰州大学,2007.
[27]孟敏,杨林生,韦炳干,等. 我国设施农田土壤重金属污染评价与空间分布特征[J]. 生态与农村环境学报,2018,34(11):1019-1026.
[28]刘刚. 我国已经成为世界上最大的化肥生产国和消费国[J]. 农化新世纪,2006(12):35.
[29]阿依帕夏·阿不都克力木. 土壤盐碱化:新疆社会经济发展面临的环境问题[J]. 和田师范专科学校学报,2008,27(3):193-194.
[30]王树和,王晓娟,王茜,等. 丛枝菌根及其宿主植物对根际微生物作用的响应[J]. 草业学报,2007,16(3):108-113.
[31]王锐竹,贺超兴,王怀松,等. 丛枝菌根真菌对不同甜瓜品种产量及营养品质的影响[J]. 园艺学报,2010,37(11):1767-1774.
[32]贺忠群,贺超兴,张志斌,等. 丛枝菌根真菌提高植物耐盐性的作用机制[J]. 西北植物学报,2007,27(2):414-420.
[33]Jakobsen I,Rosendahl L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants[J]. New Phytologist,1990,115(1):77-83.
[34]Feng G,Zhang F S,Li X L,et al. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots[J]. Mycorrhiza,2002,12(4):185-190.
[35]Muhsin T M,Zwiazek J J. Colonization with Hebeloma crustuliniforme increases water conductance and limits shoot sodium uptake in white spruce (Picea glauca) seedlings[J]. Plant and Soil,2002,238(2):217-225.
[36]王晓龙,张晓楠,严廷良,等. 盐胁迫下AMF对尖瓣海莲幼苗氮磷钾含量的影响[J]. 湖北农业科学,2016,55(17):4394-4396,4401.
[37]杨海霞,李士美,郭绍霞. 丛枝菌根真菌对紫薇耐盐性的影响[J]. 植物生理学报,2014,50(9):1379-1386.
[38]冯固,张福锁. 丛枝菌根真菌对棉花耐盐性的影响研究[J]. 中国生态农业学报,2003,11(2):21-24.
[39]张义飞,王平,毕琪,等. 不同强度盐胁迫下AM真菌对羊草生长的影响[J]. 生态学报,2016,36(17):5467-5476.
[40]杨海霞,刘润进,郭绍霞. AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响[J]. 草业学报,2014,23(4):195-203.
[41]毕琪. 丛枝菌根真菌对羊草耐盐性及生长效应分析[D]. 长春:东北师范大学,2006.
[42]Talaat N B,Shawky B T. Influence of arbuscular mycorrhizae on yield,nutrients,organic solutes,and antioxidant enzymes of two wheat cultivars under salt stress[J]. Journal of Plant Nutrition and Soil Science,2011,174(2):283-291.
[43]Navarro J M,Pérez-Tornero O,Morte A. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance[J]. Journal of Plant Physiology,2014,171(1):76-85.
[44]Matamoros M A,Baird L M,Escuredo P R,et al. Stress-induced legume root nodule senescence. Physiological,biochemical,and structural alterations[J]. Plant Physiology,1999,121(1):97-112.
[45]Garg N,Pandey R. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L.(Millsp.) genotypes[J]. Mycorrhiza,2015,25(3):165-80.
[46]Lopez F,Bousser A,Sissoff I,et al. Diurnal regulation of water transport and aquaporin gene expression in maize roots:contribution of PIP2 proteins[J]. Plant and Cell Physiology,2003,44(12):1384-1395.
[47]贺忠群,贺超兴,闫妍,等. 盐胁迫下丛枝菌根真菌对番茄吸水及水孔蛋白基因表达的调控[J]. 园艺学报,2011,38(2):273-280.
[48]贺忠群,贺超兴. 盐渍条件下丛枝菌根真菌对番茄营养吸收及离子毒害的影响[J]. 华北农学报,2013,28(1):181-186.
[49]Ouziad F,Wilde P,Schmelzer E,et al. Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress[J]. Environmental and Experimental Botany,2006,57(1/2):177-186.
[50]蔡庆生. 植物生理学[M]. 北京:中国农业大学出版社,2011.
[51]许盼云,吴玉霞,何天明. 植物对盐碱胁迫的适应机理研究进展[J]. 中国野生植物资源,2020,39(10):41-49.
[52]孔亚丽,朱春权,曹小闯,等. 土壤微生物介导植物抗盐性机理的研究进展[J]. 中国农业科学,2021,54(10):2073-2083.
[53]齐琪,马书荣,徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种,2020,18(8):2741-2746.
[54]Chandrasekaran M,Boughattas S,Hu S J,et al. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress[J]. Mycorrhiza,2014,24(8):611-625.
[55]李涛,刘润进,陈敏,等. 盐渍条件下AM真菌对大豆生长和离子含量的影响[J]. 菌物学报,2009,28(3):410-414.
[56]潘晶,黄翠华,罗君,等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制[J]. 地球科学进展,2018,33(4):361-372.
[57]刘润进,唐明,陈应龙. 菌根真菌与植物抗逆性研究进展[J]. 菌物研究,2017,15(1):70-88.
[58]Hammer E C,Nasr H,Pallon J,et al. Elemental composition of arbuscular mycorrhizal fungi at high salinity[J]. Mycorrhiza,2011,21(2):117-129.
[59]李彦,张英鹏,孙明,等. 盐分胁迫对植物的影响及植物耐盐机理研究进展[J]. 中国农学通报,2008,24(1):258-265.
[60]徐亚军,赵龙飞,邢鸿福,等. 内生细菌对盐胁迫下小麦幼苗脯氨酸和丙二醛的影响[J]. 生态学报,2020,40(11):3726-3737.
[61]张璐,张倩,叶宝兴. 盐胁迫下丛枝菌根真菌(AMF)对紫花苜蓿生长的影响[J]. 山东农业科学,2010,42(3):32-37.
[62]Mansour M,Wright Jr J R,Pohajdak B. Cloning,sequencing and characterization of the tilapia insulin gene[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1998,121(3):291-297.
[63]Jahromi F,Aroca R,Porcel R,et al. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants[J]. Microbial Ecology,2008,55(1):45-53.
[64]Ben Ahmed C,Ben Rouina B,Sensoy S,et al. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree[J]. Journal of Agricultural and Food Chemistry,2010,58(7):4216-4222.
[65]谢玉英. 谈活性氧与人类疾病[J]. 现代农业科技,2009(15):285-286,288.
[66]Pedranzani H,Rodríguez-Rivera M,Gutiérrez M,et al. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels[J]. Mycorrhiza,2016,26(2):141-152.
[67]Evelin H,Devi T S,Gupta S,et al. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis:current understanding and new challenges[J]. Frontiers in Plant Science,2019,10:470.
[68][JP+1]Palma J M,Longa M A,del Río L A,et al. Superoxide dismutase in vesicular arbuscular-mycorrhizal red clover plants[J]. Physiologia Plantarum,1993,87:77-83.
[69]张文玲,魏丽勤,王林嵩,等. 活性氧对生物大分子的氧化性损伤[J]. 河南师范大学学报(自然科学版),2000,28(4):69-71.
[70]张春楠,张瑞芳,王红,等. 丛枝菌根真菌影响作物非生物胁迫耐受性的研究进展[J]. 微生物学通报,2020,47(11):3880-3891.
[71]武祥玉,崔新仪. 丛枝菌根真菌对植物生长及果实品质的影响[J]. 天津农业科学,2016,22(6):116-119.
[72]王英男,陶爽,华晓雨,等. 盐碱胁迫下AM真菌对羊草生长及生理代谢的影响[J]. 生态学报,2018,38(6):2187-2194.
[73]许平辉,王飞权,齐玉岗,等. 丛枝菌根真菌对茶树抗旱性的影响[J]. 西北农业学报,2017,26(7):1033-1040.
[74]Abdel Latef A A H,He C X. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants?[J]. Journal of Plant Growth Regulation,2014,33(3):644-653.
[75]Luo Z B,Janz D,Jiang X N,et al. Upgrading root physiology for stress tolerance by ectomycorrhizas:insights from metabolite and transcriptional profiling into reprogramming for stress anticipation[J]. Plant Physiology,2009,151(4):1902-1917.
[76]罗玉婕,邹旭,彭冶,等. 盐胁迫对两种海棠生长和内源激素的影响[J]. 经济林研究,2021,39(1):201-210.
[77]李宗谕,刘福顺,刘秀岩,等. 盐碱胁迫和干旱胁迫对胀果甘草种子萌发及幼苗生长和内源激素影响[J]. 时珍国医国药,2020,31(6):1464-1467.
[78]赵方贵,董志昊,车永梅,等. AMF摩西球囊霉调控IAA代谢促进烟草生长[J]. 农业生物技术学报,2019,27(1):63-70.
[79]王彬,张金政,刘新,等. 丛枝菌根真菌诱导植物信号物质研究进展[J]. 微生物学通报,2010,37(2):263-268.
[80]赵琦. 混合盐碱胁迫下接种AMF对紫花苜蓿生理生长的影响[D]. 呼和浩特:内蒙古大学,2015.
[81]Isayenkov S,Mrosk C,Stenzel I,et al. Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices[J]. Plant Physiology,2005,139(3):1401-1410.
[82]王建,周紫燕,凌婉婷. 球囊霉素相关土壤蛋白的分布及环境功能研究进展[J]. 应用生态学报,2016,27(2):634-642.
[83]谢小林,顾振红,朱红惠,等. 球囊霉素相关土壤蛋白与根系形态的相关性研究[J]. 菌物学报,2013,32(6):993-1003.
[84]黎剑锦,薛杨,毛瀚,等. 丛枝菌根真菌在农业领域的作用与应用前景[J]. 热带林业,2020,48(1):75-80.
[85]Zou Y N,Srivastava A K,Wu Q S,et al. Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus tangerina) during soil water deficit[J]. Archives of Agronomy and Soil Science,2014,60(8):1103-1114.
[86]王立,贾文奇,马放,等. 菌根技术在环境修复领域中的应用及展望[J]. 生态环境学报,2010,19(2):487-493.
[87]Safir G R. The influence of vesicular-arbuscular mycorrhiza on the resistance of onion to Pyrenochaeta terrestris[D]. America:University of Illinois at Urbana-Champaign,1968:11-25.
[88]黄京华,曾任森,骆世明. AMF诱导下玉米次生化合物变化及玉米对纹枯病的抗性反应[C]//中国生态学会2006学术年会论文荟萃. 沈阳:中国生态学会,2006:194-195.
[89]Schouteden N,De Waele D,Panis B,et al. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes:a review of the mechanisms involved[J]. Frontiers in Microbiology,2015,6:1280.
[90]Ratti N,Khaliq A,Shukla P K,et al. Effect of Glomus mosseae (Nicol.and Gerd.) Gerdemann and Trappe on root-knot disease of menthol mint (Mentha arvensis subsp. haplocalyx Briquet) caused by Meloidogyne incognita (Kofoid and White) Chitwood[J]. Journal of Spices and Aromatic Crops,2015,9:129-132.
[91]晋治波,解玲,朱正杰,等. 丛枝菌根真菌对不同番茄品种抗根结线虫病的影响[J]. 微生物学通报,2021,48(3):755-764.
[92]杨文亭,冯远娇,王建武. 丛枝菌根真菌在寄主植物抵御生物和非生物胁迫中的作用[J]. 生态科学,2008,27(4):267-271.
[93]Somka A,Kuta E,Szarek-ukaszewska G,et al. Violets of the section Melanium,their colonization by arbuscular mycorrhizal fungi and their occurrence on heavy metal heaps[J]. Journal of Plant Physiology,2011,168(11):1191-1199.
[94]李信茹,米屹东,魏源,等. 丛枝菌根真菌-植物共生体系在重金属污染土壤修复上的研究进展[J]. 现代化工,2020,40(5):14-18.
[95]Bever J D,Schultz P A,Pringle A,et al. Arbuscular mycorrhizal fungi:more diverse than meets the eye,and the ecological tale of why[J]. BioScience,2001,51(11):923-931.
[96]王立,贾文奇,马放,等. 菌根技术在环境修复领域中的应用及展望[J]. 生态环境学报,2010,19(2):487-493.
[97]黄京华,曾任森,骆世明. 未来的一种生物肥料:丛枝菌根真菌[J]. 生态科学,2002,21(3):259-263.
[98]许茹,金秋,陈祖枝,等. 滨海盐土改良及其机械化农业生产研究[J]. 中国资源综合利用,2020,38(11):61-63,71.
[1]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统
作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[2]李艳,吴强盛.菌根真菌对不同基因型柑橘根际有效磷含量和磷酸酶活性的影响[J].江苏农业科学,2014,42(06):186.
Li Yan,et al.Effects of mycorrhizal fungi on rhizosphere available phosphorus content and phosphatase activity of different genotypes of citrus[J].Jiangsu Agricultural Sciences,2014,42(2):186.
[3]徐洪文,卢妍,朱先灿.丛枝菌根对玉米叶片SPAD值及光合作用光响应特征的影响[J].江苏农业科学,2016,44(11):119.
Xu Hongwen,et al.Effects of arbuscular mycorrhizal on SPAD value and light response curve characteristics of maize leaves[J].Jiangsu Agricultural Sciences,2016,44(2):119.
[4]邱丹,杜芮萍,孟德凯,等.砷超富集植物蜈蚣草丛枝菌根观察方法的优化[J].江苏农业科学,2017,45(07):236.
Qiu Dan,et al.Optimization of arbuscular mycorrhizal observation method of hyperaccumulator Pteris vittata L.[J].Jiangsu Agricultural Sciences,2017,45(2):236.
[5]王浩,胡明慧,蔡蕊,等.长江中下游稻田球囊霉素相关土壤蛋白分布格局及其对环境的响应[J].江苏农业科学,2022,50(23):192.
Wang Hao,et al.Distribution patterns and response to environment of glomalin-related soil proteins in paddy fields across the middle and lower reaches of the Yangtze River[J].Jiangsu Agricultural Sciences,2022,50(2):192.
[6]段明.基于Illumina MiSeq技术分析谷子根际丛枝菌根真菌群落多样性[J].江苏农业科学,2023,51(6):222.
Duan Ming.Study on arbuscular mycorrhizal fungi diversity in rhizosphere of foxtail millet based on Illumina MiSeq technology[J].Jiangsu Agricultural Sciences,2023,51(2):222.