[1]Gao D M,Sun Q,Hu B,et al. A framework for agricultural pest and disease monitoring based on internet-of-things and unmanned aerial vehicles[J]. Sensors,2020,20(5):1487.
[2]Gould F,Brown Z S,Kuzma J.Wicked evolution:can we address the sociobiological dilemma of pesticide resistance?[J]. Science,2018,360(6390):728-732.
[3]Sharma A,Shukla A,Attri K,et al. Global trends in pesticides:a looming threat and viable alternatives[J]. Ecotoxicology and Environmental Safety,2020,201:110812.
[4]Hernández A F,Gil F,Lacasaa M. Toxicological interactions of pesticide mixtures:an update[J]. Archives of Toxicology,2017,91(10):3211-3223.
[5]葛静,王冬兰,吴福民,等. 江苏溧阳水稻田减量用药研究初探[J]. 农药学学报,2019,21(1):66-74.
[6]何发林,姜兴印,姚晨涛,等. 氯虫苯甲酰胺与6种药剂复配对小地老虎的联合毒力[J]. 植物保护,2018,44(6):236-241.
[7]Jaber L R,Araj S E,Qasem J R.Compatibility of endophytic fungal entomopathogens with plant extracts for the management of sweetpotato whitefly Bemesia tabaci Gennadius (Homoptera:Aleyrodidae)[J]. Biological Control,2018,117:164-171.
[8]陈长卿,金辉,姜云,等. 生防菌株NJ13与化学农药复配对人参黑斑病的联合毒力及田间防效[J]. 农药,2019,58(5):381-384.
[9]张江兆,徐重新,沈燕,等. 腐霉利和咯菌腈混用对黄瓜灰霉病菌的联合毒力及药剂残留动态[J]. 农药学学报,2022,24(4):851-858.
[10]Yang J,Quan Y D,Sivaprasath P,et al. Insecticidal activity and synergistic combinations of ten different Bt toxins against Mythimna separata (Walker)[J]. Toxins,2018,10(11):454.
[11]高小宽,马光,吕亚慈,等. 不同农药对梨黑斑病的毒力测定及与三七提取物复配的研究[J]. 北方园艺,2020(5):51-55.
[12]Bel Y,Ferré J,Hernández-Martínez P. Bacillus thuringiensis toxins:functional characterization and mechanism of action[J]. Toxins,2020,12(12):785.
[13]Vanti G L,Vishwanathreddy H,Venkat H,et al. Sclerotium rolfsii lectin expressed in tobacco confers protection against Spodoptera litura and Myzus persicae[J]. Journal of Pest Science,2016,89(2):591-602.
[14]Wang X C,Tang X C,Xu D H,et al. Molecular basis and mechanism underlying the insecticidal activity of venoms and toxins from Latrodectus spiders[J]. Pest Management Science,2019,75(2):318-323.
[15]Li H B,Xia Y X.Recombinant production of the insecticidal scorpion toxin BjαIT in Escherichia coli[J]. Protein Expression and Purification,2018,142:62-67.
[16]Liu Y L,Wang Y L,Shu C L,et al. Cry64Ba and Cry64Ca,two ETX/MTX2-type Bacillus thuringiensis insecticidal proteins active against hemipteran pests[J]. Applied and Environmental Microbiology,2018,84(3):e01996-e01917.
[17]Chen W B,Lu G Q,Cheng H M,et al. Transgenic cotton coexpressing Vip3A and Cry1Ac has a broad insecticidal spectrum against lepidopteran pests[J]. Journal of Invertebrate Pathology,2017,149:59-65.
[18]陈珺君,刘芳,廖先清,等. 两种蜘蛛毒素肽与苏云金芽胞杆菌Cry1Ac蛋白的融合表达及杀虫活性[J]. 中国生物防治学报,2018,34(6):838-847.
[19]金剑雪,金道超,李文红,等. 防治白背飞虱的农药复配增效配方筛选[J]. 植物保护,2017,43(1):199-204.
[20]Narayanan M,Ranganathan M,Subramanian S M,et al. Toxicity of cypermethrin and enzyme inhibitor synergists in red hairy caterpillar Amsacta albistriga (Lepidoptera:Arctiidae)[J]. The Journal of Basic and Applied Zoology,2020,81(1):45.
[21]Malathi S,Kumar B D. Evaluation of ready mix insecticide novaluron 5.25%+indoxacarb 4.5% SC against pod borer complex in pigeonpea[J]. Andhra Agriculture Journal,2017,64(4):841-851.
[22]Kumar D,Raju S V S,Sharma K R. Population dynamics of chilli mite and their management with certain newer insecticide combination formulations[J]. Journal of Pharmacognosy and Phytochemistry,2019,8(2):403-407.
[23]潘文轩,王索,张思胜,等. 防治玉米大斑病的药剂筛选及田间应用[J]. 农药,2021,60(5):375-378.
[24]王国祯,李雪明,韩瑞旗,等. 烯丙苯噻唑和氟唑环菌胺复配颗粒剂研究及其对水稻苗期稻瘟病和纹枯病的防效[J]. 农药学学报,2020,22(2):362-369.
[25]张朝辉,张广,闫鹏,等. 复配杀菌剂防治平菇尖孢镰刀菌病害的效果测定[J]. 核农学报,2021,35(10):2311-2318.
[26]Chen J X,Jiang W L,Hu H Y,et al. Joint toxicity of methoxyfenozide and lufenuron on larvae of Spodoptera exigua Hübner (Lepidoptera:Noctuidae)[J]. Journal of Asia-Pacific Entomology,2019,22(3):795-801.
[27]Caballero J P,Murillo L,List O,et al. Nanoencapsulated deltamethrin as synergistic agent potentiates insecticide effect of indoxacarb through an unusual neuronal calcium-dependent mechanism[J]. Pesticide Biochemistry and Physiology,2019,157:1-12.
[28]Moradi F G,Hejazi M J,Hamishehkar H,et al. Co-encapsulation of imidacloprid and lambda-cyhalothrin using biocompatible nanocarriers:characterization and application[J]. Ecotoxicology and Environmental Safety,2019,175:155-163.
[29]Somar R O,Zamani A A,Alizadeh M.Joint action toxicity of imidacloprid and pymetrozine on the melon aphid,Aphis gossypii[J]. Crop Protection,2019,124:104850.
[30]Mostafiz M M,Hassan E,Shim J K,et al. Insecticidal efficacy of three benzoate derivatives against Aphis gossypii and its predator Chrysoperla carnea[J]. Ecotoxicology and Environmental Safety,2019,184:109653.
[31]Saddiq B,Ejaz M,Shad S A,et al. Assessing the combined toxicity of conventional and newer insecticides on the cotton mealybug Phenacoccus solenopsis[J]. Ecotoxicology,2017,26(9):1240-1249.
[32]Ansari H,Haseeb M.Efficacy of combination insecticide and biopesticide against Phenacoccus solenopsis in laboratory condition on okra[J]. Journal of Entomology and Zoology studies,2019,7(5):1185-1189.
[33]Liang X,Chen Q,Wu C L,et al. The joint toxicity of bifenazate and propargite mixture against Tetranychus urticae Koch[J]. International Journal of Acarology,2018,44(1):35-40.
[34]赵恒科,蓝月,南灿,等. 8%甲氰菊酯·丁氟螨酯纳米乳剂的研制及其性能[J]. 中国农业科学,2016,49(14):2700-2710.
[35]Ali S,Farooqi M A,Sajjad A,et al. Compatibility of entomopathogenic fungi and botanical extracts against the wheat aphid,Sitobion avenae (Fab.) (Hemiptera:Aphididae)[J]. Egyptian Journal of Biological Pest Control,2018,28(1):97.
[36]Wang Z Y,Fang L F,Zhou Z S,et al. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis)[J]. The Journal of Biological Chemistry,2018,293(29):11447-11458.
[37]Din S U,Azam S,Rao A Q,et al. Development of broad-spectrum and sustainable resistance in cotton against major insects through the combination of Bt and plant lectin genes[J]. Plant Cell Reports,2021,40(4):707-721.
[38]Javaid S,Amin I,Jander G,et al. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters[J]. Scientific Reports,2016,6:34706.
[39]Zhou L J,Zhang Z L,Wei M,et al. Evaluation of the antifungal activity of individual and combined monoterpenes against Rhizopus stolonifer and Absidia coerulea[J]. Environmental Science and Pollution Research,2019,26(8):7804-7809.
[40]Gad H A,Al-Anany M S,Abdelgaleil S A M.Enhancement the efficacy of spinosad for the control Sitophilus oryzae by combined application with diatomaceous earth and Trichoderma harzianum[J]. Journal of Stored Products Research,2020,88:101663.
[41]Wu J H,Yu X T,Wang X S,et al. Matrine enhances the pathogenicity of Beauveria brongniartii against Spodoptera litura (Lepidoptera:Noctuidae)[J]. Frontiers in Microbiology,2019,10:1812.
[42]Yooboon T,Pengsook A,Ratwatthananon A,et al. A plant-based extract mixture for controlling Spodoptera litura (Lepidoptera: Noctuidae) [J].Chemical and Biological Technologies in Agriculture,2019,6(1):1-10.
[43]Wu J H,Yang B,Zhang X C,et al. Synergistic interaction between the entomopathogenic fungus Akanthomyces attenuatus (Zare & Gams) and the botanical insecticide matrine against Megalurothrips usitatus (Bagrall)[J]. Journal of Fungi,2021,7(7):536.
[44]Diniz A G,Barbosa L F S,Santos A C D S,et al. Bio-insecticide effect of isolates of Fusarium caatingaense (Sordariomycetes:Hypocreales) combined to botanical extracts against Dactylopius opuntiae (Hemiptera:Dactylopiidae)[J]. Biocontrol Science and Technology,2020,30(4):384-395.
[45]Kary N E,Sanatipour Z,Mohammadi D,et al. Developmental stage affects the interaction of Steinernema carpocapsae and abamectin for the control of Phthorimaea operculella (Lepidoptera,Gelechidae)[J]. Biological Control,2018,122:18-23.
[46]Tanzeela R,Rauf S F,Hareem M,et al. Efficacy of mixture of pesticides on the mortality and energy reserves of a stored grain pest Trogoderma granarium everts[J]. Pakistan Journal of Zoology,2019,51(6):2297-2309.
[47]Fernández-Grandon G M,Harte S J,Ewany J,et al. Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy[J]. Plants,2020,9(2):173.
[48]Silva B L F,da Silva S A C,Diniz A G,et al. Entomopathogenicity of fungi in combination with Ricinus communis extract for the control of Aleurocanthus woglumi[J]. Entomologia Experimentalis et Applicata,2021,169(9):838-847.
[49]Sayed A M M,Behle R W.Evaluating a dual microbial agent biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores[J]. Biocontrol Science and Technology,2017,27(4):461-474.
[50]Konecka E,Kaznowski A,Tomkowiak D. Insecticidal activity of mixtures of Bacillus thuringiensis crystals with plant oils of Sinapis alba and Azadirachta indica[J]. Annals of Applied Biology,2019,174(3):364-371.
[51]Dubovskiy I M,Grizanova E V,Tereshchenko D,et al. Bacillus thuringiensis spores and Cry3A toxins act synergistically to expedite Colorado potato beetle mortality[J]. Toxins,2021,13(11):746.
[52]Figueiredo C S,Lemes A R N,Sebastio I,et al. Synergism of the Bacillus thuringiensis Cry1,Cry2,and Vip3 proteins in Spodoptera frugiperda control[J]. Applied Biochemistry and Biotechnology,2019,188(3):798-809.
[53]Rabelo M M,Matos J M L,Orozco-Restrepo S M,et al. Like parents,like offspring?Susceptibility to Bt toxins,development on dual-gene Bt cotton,and parental effect of Cry1Ac on a nontarget lepidopteran pest[J]. Journal of Economic Entomology,2020,113(3):1234-1242.
[54]Siddiqui H A,Asif M,Asad S,et al. Development and evaluation of double gene transgenic cotton lines expressing Cry toxins for protection against chewing insect pests[J]. Scientific Reports,2019,9:11774.
[55]Muralimohan N,Saini R P,Kesiraju K,et al. Molecular stacking of two codon-modified genes encoding Bt insecticidal proteins,Cry1AcF and Cry2Aa for management of resistance development in Helicoverpa armigera[J]. Journal of Plant Biochemistry and Biotechnology,2020,29(3):518-527.
[56]Rabelo M M,Paula-Moraes S V,Pereira E J G,et al. Demographic performance of Helicoverpa zea populations on dual and triple-gene bt cotton[J]. Toxins,2020,12(9):551.
[57]Pereira A E,Huynh M P,Carlson A R,et al. Assessing the single and combined toxicity of the bioinsecticide spear and Cry3Bb1 protein against susceptible and resistant western corn rootworm larvae (Coleoptera:Chrysomelidae)[J]. Journal of Economic Entomology,2021,114(5):2220-2228.
[58]Pan Z Z,Xu L,Zheng Y S,et al. Synthesis and characterization of Cry2Ab-AVM bioconjugate:enhanced affinity to binding proteins and insecticidal activity[J]. Toxins,2019,11(9):497.
[59]Khabbazi S D,Khabbazi A D,Fatih zcan S,et al. Expression of GNA and biting site-restricted cry1Ac in cotton;an efficient attribution to insect pest management strategies[J]. Plant Biotechnology Reports,2018,12(4):273-282.
[60]Boddupally D,Tamirisa S,Gundra S R,et al. Expression of hybrid fusion protein (Cry1Ac:ASAL) in transgenic rice plants imparts resistance against multiple insect pests[J]. Scientific Reports,2018,8:8458.
[61]Rani S,Sharma V,Hada A,et al. Fusion gene construct preparation with lectin and protease inhibitor genes against aphids and efficient genetic transformation of Brassica juncea using cotyledons explants[J]. Acta Physiologiae Plantarum,2017,39(5):115.
[62]Jia M,Cao G C,Li Y B,et al. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen)[J]. Scientific Reports,2016,6:28424.
[63]Burtet L M,Bernardi O,Melo A A,et al. Managing fall armyworm,Spodoptera frugiperda (Lepidoptera:Noctuidae),with Bt maize and insecticides in southern Brazil[J]. Pest Management Science,2017,73(12):2569-2577.
[64]Santos T,Quintela E,Moura M G,et al. Enhanced mortality of Bemisia tabaci nymphs by Isaria javanica combined with sublethal doses of chemical insecticides[J]. Journal of Applied Entomology,2018,142(1):598-609.
[65]Wari D,Okada R,Takagi M,et al. Augmentation and compatibility of Beauveria bassiana with pesticides against different growth stages of Bemisia tabaci (Gennadius);an in vitro and field approach[J]. Pest Management Science,2020,76(9):3236-3252.
[66]Khaliq A,Ullah M I,Afzal M,et al. Management of Tribolium castaneum using synergism between conventional fumigant and plant essential oils[J]. International Journal of Tropical Insect Science,2020,40(4):781-788.
[67]Kachot A V,Jethva D M,Patel D S. Bio-efficacy of Beauveria bassiana (Balsamo) Vuillemin against onion thrips,Thrips tabaci Lindeman[J]. The Pharma Innovation Journal,2021,10(9):1456-1459.
[68]Wu S H,Kostromytska O S,Koppenhfer A M.Synergistic combinations of a pyrethroid insecticide and an emulsifiable oil formulation of Beauveria bassiana to overcome insecticide resistance in Listronotus maculicollis (Coleoptera:Curculionidae)[J]. Journal of Economic Entomology,2017,110(4):1794-1802.
[69]Suraphan N,Fan L F,Liu B X,et al. Co-delivery of chlorantraniliprole and avermectin with a polylactide microcapsule formulation[J]. RSC Advances,2020,10(43):25418-25425.
[70]Xiang L B,Xue M F,Yang L J,et al. Bionic fungicide physcion controls gray mold in tomato:possible modes of action[J]. Journal of General Plant Pathology,2019,85(1):57-65.
[71]Qin H,Zhou X T,Gu D F,et al. Preparation and characterization of a novel waterborne lambda-cyhalothrin/alkyd nanoemulsion[J]. Journal of Agricultural and Food Chemistry,2019,67(38):10587-10594.
[72]Deng S Q,Zou W H,Li D L,et al. Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes[J]. PLoS Neglected Tropical Diseases,2019,13(7):e0007590.
[73]高汝佳,尤春梅,黄沈鑫,等. 不同生物农药及与化学农药复配对桃流胶病菌的毒力[J]. 农药,2016,55(7):536-538.
[74]Wang Y,Zhu Y C,Li W. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.)[J]. Ecotoxicology and Environmental Safety,2020,190:110100.
[75]Tiwari R K,Singh S,Pandey R S.Assessment of acute toxicity and biochemical responses to chlorpyrifos,cypermethrin and their combination exposed earthworm,Eudrilus eugeniae[J]. Toxicology Reports,2019,6:288-297.
[76]Qiu W,Liu X,Yang F,et al. Single and joint toxic effects of four antibiotics on some metabolic pathways of zebrafish (Danio rerio) larvae[J]. Science of the Total Environment,2020,716:137062.
[1]胡永红,曹峥,杨文革,等.多效霉素研究进展[J].江苏农业科学,2013,41(12):1.
Hu Yonghong,et al.Research progress of polyoxin[J].Jiangsu Agricultural Sciences,2013,41(4):1.
[2]张爱华,任志成,王壮,等.不同生物源农药对西洋参主要病害的室内抑菌活性及田间防效[J].江苏农业科学,2015,43(11):197.
Zhang Aihua,et al.Antifungal and field control effects of different fungicides to main pathogens of American ginseng[J].Jiangsu Agricultural Sciences,2015,43(4):197.
[3]龙亚飞,王啸,邱树毅,等.农用多抗霉素对不同地域莱氏野村菌的抑制效果[J].江苏农业科学,2015,43(01):144.
Long Yafei,et al.Inhibitory effect of agricultural polyoxin on Nomuraea rileyi from different regions[J].Jiangsu Agricultural Sciences,2015,43(4):144.
[4]徐婧,沈晓兰,周捷,等.生物农药茶多酚微乳剂的制备及其对稻瘟病菌的抑制效果[J].江苏农业科学,2017,45(19):191.
Xu Jing,et al.Preparation of biological pesticide tea polyphenols micro emulsion and its inhibitory effect on Magnaporthe grisea[J].Jiangsu Agricultural Sciences,2017,45(4):191.
[5]刘文,赵蔓菁,张国庆,等.玻璃温室番茄烟粉虱发生动态与防治技术研究[J].江苏农业科学,2018,46(11):87.
Liu wen,et al.Study on occurrence dynamics and control techniques of Bemisia tabaci in glasshouse[J].Jiangsu Agricultural Sciences,2018,46(4):87.
[6]席新明,邱凌,邱洪臣,等.木醋酸-沼液耦合喷施对苹果树病虫害的防治效果[J].江苏农业科学,2019,47(04):101.
Xi Xinming,et al.Control effect of wood acetic acid-biogas slurry coupled spraying on diseases and insect pests of apple tree[J].Jiangsu Agricultural Sciences,2019,47(4):101.
[7]王艳,刘琴,黄金金,等.内生放线菌SR-1102对蔬菜立枯病的防效及其促生作用[J].江苏农业科学,2020,48(07):123.
Wang Yan,et al.Control effect of endophytic actinomycete SR-1102 on rhizoctonia rot and its growth promoting effect[J].Jiangsu Agricultural Sciences,2020,48(4):123.
[8]陈洪凡,黄蓉,胡建坤,等.菊花病虫害防治化学农药减施替代技术综述[J].江苏农业科学,2020,48(14):6.
Chen Hongfan,et al.Substitution technologies of chemical control and pesticide reduction for chrysanthemum diseases and insect pests control: a review[J].Jiangsu Agricultural Sciences,2020,48(4):6.
[9]胡婕,罗玉端,毛林夏,等.化学农药和木霉菌株抑制石榴果实干腐病病菌的效果评估[J].江苏农业科学,2020,48(17):116.
Hu Jie,et al.Study on inhibiting effects of fungicides and Trichoderma on pathogen of pomegranate fruit dry rot[J].Jiangsu Agricultural Sciences,2020,48(4):116.
[10]徐胜,齐振宏,黄炜虹,等.公共农技推广对农户施药行为的影响——基于PSM模型的实证研究[J].江苏农业科学,2021,49(2):229.
Xu Sheng,et al.Impact of public agricultural technology extension on farmers drug application behavior—Empirical study based on PSM model[J].Jiangsu Agricultural Sciences,2021,49(4):229.