[1]陈民,胡雪琼,鲁韦坤,等. 人工神经网络在农业病害预测中的应用[J]. 现代农业科技,2020(21):136-140.
[2]王亚华,臧良震,苏毅清. 2035年中国农业现代化前景展望[J]. 农业现代化研究,2020,41(1):16-23.
[3]王翔宇,温皓杰,李鑫星,等. 农业主要病害检测与预警技术研究进展分析[J]. 农业机械学报,2016,47(9):266-277.
[4]全国农业技术推广服务中心. 2022年全国农作物重大病虫害发生趋势预报[N]. 农民日报,2022-02-16(6).
[5]国家粮食和物资储备局. 2022年中央一号文件(全文)[EB/OL]. (2022-02-22)[2022-04-16]. http://www.lswz.gov.cn/html/xinwen/2022-02/22/content_269430.shtml.
[6]奚云红. 植物病害分类及其防治措施[J]. 云南农业科技,2021(5):27.
[7]赵艳宏,封力源,牛真. 玉米缺素症的发生识别及防治措施[J]. 农业与技术,2014,34(4):108.
[8]陈利锋. 农业植物病理学[M]. 3版.北京:中国农业出版社,2007:359-362.
[9]赵中华,车兴壁,张君. 物联网技术在马铃薯晚疫病防控中的应用实践[J]. 中国植保导刊,2015,35(7):37-40.
[10]Foughali K,Fathallah K,Frihida A. Using cloud IOT for disease prevention in precision agriculture[J]. Procedia Computer Science,2018,130:575-582.
[11]刘力宁. 基于物联网的苹果生长环境监测与苹果冻害预警系统研究[D]. 济南:山东农业大学,2019.
[12]黄冲,刘万才,姜玉英,等. 小麦赤霉病物联网实时监测预警技术试验评估[J]. 中国植保导刊,2020,40(9):28-32.
[13]李时睿,王治海,金志凤,等. 茶叶霜冻害精细化预警——以浙江省松阳县为例[J]. 生态学杂志,2017,36(10):2979-2987.
[14]韩国鑫. 基于气象条件的水稻病害短期分级预警系统的研究[D]. 大庆:黑龙江八一农垦大学,2019.
[15]贾媛. 基于数据驱动的温室黄瓜霜霉病监测预警系统[D]. 济南:山东农业大学,2019.
[16]曹峰. 基于多源数据的油菜病害快速诊断方法与物联网监测系统[D]. 杭州:浙江大学,2019.
[17]Menaka R,Keshav G,Chandra K,et al. Monitoring and disease diagnosis of Oryza sativa crops through an IoT enabled embedded system[J]. International Journal of Recent Technology and Engineering,2019,8(1):191-197.
[18]张领先,李鑫星. 蔬菜病害识别诊断与预警物联网技术研究与应用[J]. 蔬菜,2017(8):50-55.
[19]高荣华,李奇峰,孙想,等. 多结构参数集成学习的设施黄瓜病害智能诊断[J]. 农业工程学报,2020,36(16):158-165.
[20]农业农村部. 中华人民共和国农业农村部公告第333号[EB/OL]. (2020-09-15)[2022-04-16]. http://www.gov.cn/zhengce/zhengceku/2020-09/17/content_5544165.htm.
[21]肖长坤,李健强,师迎春,等. 十字花科蔬菜黑斑病菌的PCR鉴定[J]. 植物病理学报,2005(3):278-282.
[22]Paul R,Saville A C,Hansel J C,et al. Extraction of plant DNA by microneedle patch for rapid detection of plant diseases[J]. ACS Nano,2019,13(6):6540-6549.
[23]王奥霖. 田间空气中小麦白粉菌分生孢子的动态监测及远程传播气流轨迹分析[D]. 北京:中国农业科学院,2021.
[24]杨怡华,王明郧,曹瑱艳,等. 麦冬主要病害病原菌巢式多重PCR检测方法的建立[J]. 植物保护学报,2021,48(4):742-747.
[25]周益林,段霞瑜,程登发. 利用移动式孢子捕捉器捕获的孢子量估计小麦白粉病田间病情[J]. 植物病理学报,2007(3):307-309.
[26]张曼玉. 小麦赤霉病菌孢子释放规律研究[D]. 合肥:安徽农业大学,2021.
[27]Tao Y,Nadege S W,Huang C,et al. Brachypodium distachyon is a suitable host plant for study of barley yellow dwarf virus[J]. Virus Genes,2016,52(2):299-302.
[28]齐龙,蒋郁,李泽华,等. 基于显微图像处理的稻瘟病菌孢子自动检测与计数方法[J]. 农业工程学报,2015,31(12):186-193.
[29]陈驰原. 基于微流控与衍射重构技术的水稻病害孢子检测方法[D]. 镇江:江苏大学,2020.
[30]段迎. 小麦白粉病害及气象信息监测管理系统的关键技术研究[D]. 北京:北京工业大学,2019.
[31]杨宁,陈驰原,李国晓,等. 基于衍射重构技术的作物真菌病害孢子微型检测装置[J]. 农业机械学报,2019,50(4):42-48.
[32]王程利. 脉冲云智能孢子捕捉仪的研制与小麦锈病远程监测[D]. 济南:山东农业大学,2018.
[33]王海超,高雄,陈铁英,等. 农作物病害检测中光谱和图像处理技术现状及展望[J]. 农机化研究,2015,37(10):1-7,12.
[34]Lin F,Guo S,Tan C,et al. Identification of rice sheath blight through spectral responses using hyperspectral images[J]. Sensors,2020,20(21):6243.
[35]Yuan L,Yan P,Han W,et al. Detection of anthracnose in tea plants based on hyperspectral imaging[J]. Computers and Electronics in Agriculture,2019,167:105039.
[36]徐冬云. 基于遥感技术的烟草花叶病监测研究[D]. 济南:山东农业大学,2016.
[37]Abdulridha J,Ehsani R,de Castro A. Detection and differentiation between laurel wilt disease,phytophthora disease,and salinity damage using a hyperspectral sensing technique[J]. Agriculture,2016,6(4):56.
[38]Raza M M,Harding C,Liebman M,et al. Exploring the potential of high-resolution satellite imagery for the detection of soybean sudden death syndrome[J]. Remote Sensing,2020,12(7):1213.
[39]田洋洋. 基于多源卫星遥感数据的水稻纹枯病生境适宜性评价研究[D]. 杭州:杭州电子科技大学,2021.
[40]马慧琴,黄文江,景元书. 遥感与气象数据结合预测小麦灌浆期白粉病[J]. 农业工程学报,2016,32(9):165-172.
[41]Shi Y,Han L,Kleerekoper A,et al. Novel CropdocNet model for automated potato late blight disease detection from unmanned aerial vehicle-based hyperspectral imagery[J]. Remote Sensing,2022,14(2):396.
[42]Moriya A S,Imai N N,Tommaselli A M G,et al. Detection and mapping of trees infected with citrus gummosis using UAV hyperspectral data[J]. Computers and Electronics in Agriculture,2021,188:106298.
[43]See B D,Hashim S J,Shafri H,et al. A new rapid,low-cost and GPS-centric unmanned aerial vehicle incorporating in-situ multispectral oil palm trees health detection[J]. Journal of Agricultural Science and Botany,2018,2(4):12-16.
[44]秦丰,刘东霞,孙炳达,等. 基于图像处理技术的四种苜蓿叶部病害的识别[J]. 中国农业大学学报,2016,21(10):65-75.
[45]李亚文,张军,陈月星. 基于K-means和特征提取的植物叶部病害检测与实现[J]. 陕西农业科学,2021,67(6):33-37,41.
[46]陈荣,李旺,周文玉. 基于灰度共生矩阵和支持向量机的茶叶病害诊断研究[J]. 贵州科学,2021,39(4):80-84.
[47]Wu C,Wang X. Preliminary research on the identification system for anthracnose and powdery mildew of sandalwood leaf based on image processing[J]. PLoS One,2017,12(7):e0181537.
[48]郑建华,朱立学,朱蓉. 基于多特征融合与支持向量机的葡萄病害识别[J]. 现代农业装备,2018(6):54-60.
[49]Agarwal M,Gupta S,Biswas K K. A new Conv2D model with modified ReLU activation function for identification of disease type and severity in cucumber plant[J]. Sustainable Computing:Informatics and Systems,2021,30:100473.
[50]孙俊,朱伟栋,罗元秋,等. 基于改进MobileNet-V2的田间农作物叶片病害识别[J]. 农业工程学报,2021,37(22):161-169.
[51]Upadhyay S K,Kumar A. A novel approach for rice plant diseases classification with deep convolutional neural network[J]. International Journal of Information Technology,2022,14(1):185-199.
[52]卜翔宇. 基于叶片图像的农作物病害识别方法研究[D]. 合肥:合肥工业大学,2017.
[53]Adedoja A,Owolawi P A,Mapayi T. Deep learning based on nasnet for plant disease recognition using leave images[C]//2019 International Conference on Advances in Big Data,Computing and Data Communication Systems (icABCD). IEEE,2019:1-5.
[1]胡辉,黄光中,尧国民,等.兔感染球虫病继发大肠杆菌病的诊断及病因分析[J].江苏农业科学,2013,41(07):201.
Hu Hui,et al.Diagnosis and etiology analysis of rabbit coccidiosis infection secondary to E. coli disease[J].Jiangsu Agricultural Sciences,2013,41(6):201.
[2]王凤云,林峰,陈玉霞,等.猪瘟与猪链球菌病混合感染的诊断与防治[J].江苏农业科学,2014,42(09):183.
Wang Fengyun,et al.Diagnosis and prevention of mixed infection of swine fever and swine streptococcal diseases[J].Jiangsu Agricultural Sciences,2014,42(6):183.
[3]谭菊,李巨银,黄东璋,等.猪瘟与附红细胞体病混合感染的诊治[J].江苏农业科学,2013,41(09):181.
Tan Ju,et al.Diagnosis and treatment of mixed infection of swine fever and eperythrozoonosis[J].Jiangsu Agricultural Sciences,2013,41(6):181.
[4]胡路锋,刘贤侠,王少华,等.应用B超辅助诊断奶牛临床子宫疾病[J].江苏农业科学,2013,41(12):229.
Hu Lufeng,et al.Application of B-mode ultrasonography in diagnosis of clinical uterus diseases of dairy cows[J].Jiangsu Agricultural Sciences,2013,41(6):229.
[5]高洁芝,夏梦蕾,孟展,等.PSR框架下土地生态系统健康诊断[J].江苏农业科学,2017,45(11):240.
Gao Jiezhi,et al.Soil ecosystem health diagnosis under PSR framework[J].Jiangsu Agricultural Sciences,2017,45(6):240.
[6]张启宇,刘峰,陈英义,等.海参病害防治诊断专家系统的研究[J].江苏农业科学,2017,45(18):226.
Zhang Qiyu,et al.Study on expert system for diagnosis and treatment of sea cucumber disease[J].Jiangsu Agricultural Sciences,2017,45(6):226.
[7]刘建凤,吉春明,卫甜,等.月季主要病害的诊断与综合防治技术[J].江苏农业科学,2019,47(08):117.
Liu Jianfeng,et al.Diagnosis and integrated control technology of major diseases in Chinese roses[J].Jiangsu Agricultural Sciences,2019,47(6):117.
[8]史荣华,周扬,颜彩霞,等.1例蛋鸡腺病毒感染的诊断及对SPF鸡的致病性[J].江苏农业科学,2020,48(06):156.
Shi Ronghua,et al.Diagnosis of a case of adenovirus infection in laying hens and its pathogenicity to SPF chicken[J].Jiangsu Agricultural Sciences,2020,48(6):156.
[9]马紫恒,赵鹏翔,马雪梅,等.布鲁氏菌病的病原学、流行病学及防治研究进展[J].江苏农业科学,2021,49(1):28.
Ma Ziheng,et al.Research progress on etiology,epidemiology and control of brucellosis[J].Jiangsu Agricultural Sciences,2021,49(6):28.
[10]张净,邵文文,刘晓梅,等.基于超图的双模态特征融合的作物病害识别算法[J].江苏农业科学,2023,51(15):164.
Zhang Jing,et al.Crop disease identification based on bimodal feature fusion and HGNN[J].Jiangsu Agricultural Sciences,2023,51(6):164.