|本期目录/Table of Contents|

[1]贺丹,李鹏,赵珅,等.多黏类芽孢杆菌的生防机制研究进展[J].江苏农业科学,2023,51(8):1-8.
 He Dan,et al.Research progress on biocontrol mechanism of Paenibacillus polymyxa[J].Jiangsu Agricultural Sciences,2023,51(8):1-8.
点击复制

多黏类芽孢杆菌的生防机制研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第8期
页码:
1-8
栏目:
专论与综述
出版日期:
2023-04-20

文章信息/Info

Title:
Research progress on biocontrol mechanism of Paenibacillus polymyxa
作者:
贺丹李鹏赵珅姜虹田苗赵婷婷仁安周彦丽李明昊任毅
黑龙江省农垦科学院农畜产品综合利用研究所,黑龙江哈尔滨150036
Author(s):
He Danet al
关键词:
多黏类芽孢杆菌生防机制抗菌物质竞争作用诱导植物抗病性
Keywords:
-
分类号:
S476;S182
DOI:
-
文献标志码:
A
摘要:
多黏类芽孢杆菌(Paenibacillus polymyxa)是一种常见的植物根际促生细菌(PGPR),具有巨大的生物防治潜力,且在可持续农业中发挥的作用越来越重要。多黏类芽孢杆菌可以防治细菌、真菌、线虫和病毒,这是通过生产各种抗菌物质、生长必需物质的竞争以及通过引发植物的过敏防御反应来实现的。多黏类芽孢杆菌衍生的抗菌物质包括葡聚糖酶、几丁质酶、淀粉酶、纤维素酶、黏菌素、羊毛硫菌素、杀镰孢菌素、多肽菌素等,生长必需物质的竞争主要是铁载体,可通过诱导系统抗性 (ISR)引发植物的过敏防御反应。因此,多黏类芽孢杆菌是生产生物农药的重要菌种,由多黏类芽孢杆菌及其衍生物制备的微生物农药以其良好的环境友好性、生物防治机制的多样性和对土壤病害的良好防治效果,成为植物病害防治的重要策略之一。探究多黏类芽孢杆菌的生防机制具有重要的理论和应用价值,并对近年来多黏类芽孢杆菌通过产生抗菌物质、竞争作用以及诱导植物抗病性等生防机制的研究进展进行综述。
Abstract:
-

参考文献/References:

[1]Monte E,Llobell A. Trichoderma in organic agriculture[C]//Proceedings V World Avocado Congress (Actas V Congreso Mundial del Aguacate),2003:725-733.
[2]Ajit N S,Verma R,Shanmugam V. Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt[J]. Current Microbiology,2006,52(4):310-316.
[3]Gortari M C,Hours R A. Fungal chitinases and their biological role in the antagonism onto nematode eggs:a review[J]. Mycological Progress,2008,7(4):221-238.
[4]Simmons C R,Litts J C,Huang N,et al. Structure of a rice β-glucanase gene regulated by ethylene,cytokinin,wounding,salicylic acid and fungal elicitors[J]. Plant Molecular Biology,1992,18(1):33-45.
[5]Neeraja C,Anil K,Purushotham P,et al. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants[J]. Critical Reviews in Biotechnology,2010,30(3):231-241.
[6]Radjacommare R,Venkatesan S,Samiyappan R. Biological control of phytopathogenic fungi of Vanilla through lytic action of Trichoderma species and Pseudomonas fluorescens[J]. Archives of Phytopathology and Plant Protection,2010,43(1):1-17.
[7]Wang S L,Shih I L,Liang T W,et al. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium[J]. Journal of Agricultural and Food Chemistry,2002,50(8):2241-2248.
[8]Zhang Z,Yuen G Y. The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana[J]. Phytopathology,2000,90(4):384-389.
[9]Lebeis S L,Powell K R,Merlin D,et al. Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium[J]. Infection and Immunity,2009,77(2):604-614.
[10]Padda K P,Puri A,Zeng Q W,et al. Effect of GFP-tagging on nitrogen fixation and plant growth promotion of an endophytic diazotrophic strain of Paenibacillus polymyxa[J]. Botany,2017,95(9):933-942.
[11]Ash C,Priest F G,Collins M D. Molecular identification of rRNA group 3 bacilli (Ash,Farrow,Wallbanks and Collins) using a PCR probe test[J]. Antonie Van Leeuwenhoek,1993,64(3/4):253-260.
[12]Lal S,Tabacchioni S. Ecology and biotechnological potential of Paenibacillus polymyxa:a minireview[J]. Indian Journal of Microbiology,2009,49(1):2-10.
[13]Zhou L L,Zhang T,Tang S,et al. Pan-genome analysis of Paenibacillus polymyxa strains reveals the mechanism of plant growth promotion and biocontrol[J]. Antonie Van Leeuwenhoek,2020,113(11):1539-1558.
[14]Lohans C T,Huang Z D,van Belkum M J,et al. Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy[J]. Journal of the American Chemical Society,2012,134(48):19540-19543.
[15]MacKelprang R,Grube A M,Lamendella R,et al. Microbial community structure and functional potential in cultivated and native tallgrass prairie soils of the Midwestern United States[J]. Frontiers in Microbiology,2018,9:1775.
[16]Liu J,Luo J G,Ye H,et al. Preparation,antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3[J]. Food and Chemical Toxicology,2012,50(3/4):767-772.
[17]Niu B,Vater J,Rueckert C,et al. Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp.by the biocontrol rhizobacterium Paenibacillus polymyxa M-1[J]. BMC Microbiology,2013,13:137.
[18]Li Y L,Chen S F. Fusaricidin produced by Paenibacillus polymyxa WLY78 induces systemic resistance against Fusarium wilt of cucumber[J]. International Journal of Molecular Sciences,2019,20(20):5240.
[19]Eastman A W,Heinrichs D E,Yuan Z C. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness[J]. BMC Genomics,2014,15:851.
[20]Liu H,Wang C Q,Li Y H,et al. Complete genome sequence of Paenibacillus polymyxa YC0573,a plant growth-promoting rhizobacterium with antimicrobial activity[J]. Genome Announcements,2017,5(6):e01636-e01616.
[21]Kim J F,Jeong H,Park S Y,et al. Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681[J]. J Bacteriol,2010,192(22):6103-6104.
[22]Guo L L,Karpac J,Tran S L,et al. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan[J]. Cell,2014,156(1/2):109-122.
[23]陈浩. 多黏类芽孢杆菌X33发酵条件的优化及生物防治效果研究[D]. 哈尔滨:哈尔滨工业大学,2019
[24]王波,王幸,周兴根,等. 多黏类芽孢杆菌(Paenibacillus polymyxa)XZ-2发酵条件优化的研究[J]. 江西农业学报,2018,30(11):57-61.
[25]郑维,权春善,赵晶,等. 芽孢杆菌产环脂肽类化合物结构与生物合成机制研究进展[J]. 山东化工,2016,45(8):51-52,54.
[26]Mousa W K,Raizada M N. Biodiversity of genes encoding anti-microbial traits within plant associated microbes[J]. Frontiers in Plant Science,2015,6:231.
[27]Bionda N,Pitteloud J P,Cudic P. Cyclic lipodepsipeptides:a new class of antibacterial agents in the battle against resistant bacteria[J]. Future Medicinal Chemistry,2013,5(11):1311-1330.
[28]Niu B,Rueckert C,Blom J,et al. The genome of the plant growth-promoting rhizobacterium Paenibacillus polymyxa M-1 contains nine sites dedicated to nonribosomal synthesis of lipopeptides and polyketides[J]. Journal of Bacteriology,2011,193(20):5862-5863.
[29]Wang L Y,Zhang L H,Liu Z Z,et al. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli[J]. PLoS Genetics,2013,9(10):e1003865.
[30]Li Y M,Li Q,Li Y M,et al. Draft genome sequence of Paenibacillus polymyxa KF-1,an excellent producer of microbicides[J]. Genome Announcements,2016,4(4):e00727-e00716.
[31]闫博巍,闫凤超,赵婷婷,等. 类芽孢杆菌源抗病基因在作物病害防治上的应用研究进展[J]. 现代化农业,2019(8):4-8.
[32]Bhattacharya D,Nagpure A,Gupta R K. Bacterial chitinases:properties and potential[J]. Critical Reviews in Biotechnology,2007,27(1):21-28.
[33]Boot R G,Blommaart E F C,Swart E,et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase[J]. Journal of Biological Chemistry,2001,276(9):6770-6778.
[34]Kragh K M,Jacobsen S,Mikkelsen J D,et al. Tissue specificity and induction of class Ⅰ,Ⅱ and Ⅲ chitinases in barley (Hordeum vulgare)[J]. Physiologia Plantarum,1993,89(3):490-498.
[35]Shinshi H,Neuhas J M,Ryals J,et al. Structure of a tobacco endochitinase gene:evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain[J]. Plant Molecular Biology,1990,14(3):357-368.
[36]Cohen-Kupiec R,Chet I. The molecular biology of chitin digestion[J]. Current Opinion in Biotechnology,1998,9(3):270-277.
[37]Vaidya R,Roy S,Macmil S,et al. Purification and characterization of chitinase from Alcaligenes xylosoxydans[J]. Biotechnology Letters,2003,25(9):715-717.
[38]Kishimoto K,Nishizawa Y,Tabei Y,et al. Transgenic cucumber expressing an endogenous class Ⅲ chitinase gene has reduced symptoms from Botrytis cinerea[J]. Journal of General Plant Pathology,2004,70(6):314-320.
[39]Gupta R,Saxena R K,Chaturvedi P,et al. Chitinase production by Streptomyces viridificans:its potential in fungal cell wall Lysis[J]. Journal of Applied Bacteriology,1995,78(4):378-383.
[40]Jobin G,Couture G,Goyer C,et al. Streptomycete spores entrapped in chitosan beads as a novel biocontrol tool against common scab of potato[J]. Applied Microbiology and Biotechnology,2005,68(1):104-110.
[41]Vaidya R,Shah I,Vyas P,et al. Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans:potential in antifungal biocontrol[J]. World Journal of Microbiology and Biotechnology,2001,17:691-696.
[42]Yuan W,Crawford D. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots[J]. Applied and Environmental Microbiology,1995,61:3119-3128.
[43]Ojaghian S,Wang L,Xie G L. Enhanced resistance to white rot in Ipomoea batatas expressing a Trichoderma harzianum chitinase gene[J]. Journal of General Plant Pathology,2020,86(5):412-418.
[44]Distefano G,la Malfa S,Vitale A,et al. Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection[J]. Transgenic Research,2008,17(5):873-879.
[45]Shah J M,Raghupathy V,Veluthambi K. Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens[J]. Biotechnology Letters,2009,31(2):239-244.
[46]Xu X J,Zhang L Q,Zhu Y Y,et al. Improving biocontrol effect of Pseudomonas fluorescens P5 on plant diseases by genetic modification with chitinase gene[J]. Chinese Journal of Agricultural Biotechnology,2005,2(1):23-27.
[47]Rattanakit N,Yano S,Plikomol A,et al. Purification of Aspergillus sp. S1-13 chitinases and their role in saccharification of chitin in mash of solid-state culture with shellfish waste[J]. Journal of Bioscience and Bioengineering,2007,103(6):535-541.
[48]Cho K M,Hong S Y,Lee S M,et al. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains[J]. Applied Microbiology and Biotechnology,2006,73(3):618-630.
[49]Du N S,Shi L,Yuan Y H,et al. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber[J]. Microbiological Research,2017,202:1-10.
[50]Kavitha S,Senthilkumar S,Gnanamanickam S,et al. Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16[J]. Process Biochemistry,2005,40(10):3236-3243.
[51]Heyndrickx M,Vandemeulebroecke K,Scheldeman P,et al. Paenibacillus (formerly Bacillus) gordonae (Pichinoty et al. 1986) Ash et al. 1994 is a later subjective synonym of Paenibacillus (formerly Bacillus) validus (Nakamura 1984) Ash et al. 1994:emended description of P.validus[J]. International Journal of Systematic Bacteriology,1995,45(4):661-669.
[52]Heyndrickx M,Vandemeulebroecke K,Hoste B,et al. Reclassification of Paenibacillus (formerly Bacillus) pulvifaciens (Nakamura 1984) Ash et al. 1994,a later subjective synonym of Paenibacillus (formerly Bacillus) larvae (White 1906) Ash et al. 1994,as a sub species of P.larvae,with emended descriptions of P.larvae as P.larvae subsp.larvae and P.larvae subsp. pulvifaciens[J]. International Journal of Systematic Bacteriology,1996,46(1):270-279.
[53]Hertlein G,Müller S,Garcia-Gonzalez E,et al. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae[J]. PLoS One,2014,9(9):e108272.
[54]Raza W,Shen Q R. Growth,Fe3+ reductase activity,and siderophore production by Paenibacillus polymyxa SQR-21 under differential iron conditions[J]. Current Microbiology,2010,61(5):390-395.
[55]Eastman A W,Heinrichs D E,Yuan Z C. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness[J]. BMC Genomics,2014,15:851.
[56]Wen Y P,Wu X C,Teng Y,et al. Identification and analysis of the gene cluster involved in biosynthesis of paenibactin,a catecholate siderophore produced by Paenibacillus elgii B69[J]. Environmental Microbiology,2011,13(10):2726-2737.
[57]Zhou C,Guo J S,Zhu L,et al. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms[J]. Plant Physiology and Biochemistry,2016,105:162-173.
[58]Pieterse C M J,Zamioudis C,Berendsen R L,et al. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology,2014,52:347-375.
[59]Farag M A,Zhang H M,Ryu C M. Dynamic chemical communication between plants and bacteria through airborne signals:induced resistance by bacterial volatiles[J]. Journal of Chemical Ecology,2013,39(7):1007-1018.
[60]杨得强,周春发,黄龙伟,等. 内生芽孢杆菌对植物生长发育及病害防治的研究进展[J]. 安徽农业科学,2020,48(4):11-14.
[61]胡琼,任国平. 多黏类芽孢杆菌在植物生产中的应用及作用机制[J]. 北方园艺,2020(24):137-144.
[62]Lee B,Farag M A,Park H B,et al. Induced resistance by a long-chain bacterial volatile:elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa[J]. PLoS One,2012,7(11):e48744.
[63]Du N S,Shi L,Yuan Y H,et al. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber[J]. Microbiological Research,2017,202:1-10.
[64]Luo Y C,Cheng Y J,Yi J C,et al. Complete genome sequence of industrial biocontrol strain Paenibacillus polymyxa HY96-2 and further analysis of its biocontrol mechanism[J]. Frontiers in Microbiology,2018,9:1520.
[65]Park K Y,Seo S Y,Oh B R,et al. 2,3-butanediol induces systemic acquired resistance in the plant immune response[J]. Journal of Plant Biology,2018,61(6):424-434.
[66]Jeong H,Choi S K,Ryu C M,et al. Chronicle of a soil bacterium:Paenibacillus polymyxa E681 as a tiny guardian of plant and human health[J]. Frontiers in Microbiology,2019,10:467.
[67]Cheng W L,Yang J Y,Nie Q Y,et al. Volatile organic compounds from Paenibacillus polymyxa KM2501-1 control Meloidogyne incognita by multiple strategies[J]. Scientific Reports,2017,7:16213.
[68]Morath S U,Hung R,Bennett J W. Fungal volatile organic compounds:a review with emphasis on their biotechnological potential[J]. Fungal Biology Reviews,2012,26(2/3):73-83.
[69]Garbeva P,Hordijk C,Gerards S,et al. Volatile-mediated interactions between phylogenetically different soil bacteria[J]. Frontiers in Microbiology,2014,5:289.
[70]Raza W,Yuan J,Ling N,et al. Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f.sp. niveum[J]. Biological Control,2015,80:89-95.

相似文献/References:

[1]易龙,张亚,廖晓兰,等.链霉菌防治植物病害的研究进展[J].江苏农业科学,2014,42(03):91.
 Yi Long,et al.Research progress of streptomyces controlling plant diseases[J].Jiangsu Agricultural Sciences,2014,42(8):91.
[2]曹丽亚,陈大欢,郭荣艳,等.多黏类芽孢杆菌HT16对梨采后黑斑病的抑制效果[J].江苏农业科学,2017,45(01):107.
 Cao Liya,et al.Inhibitory effects of Paenibacillus polymyxa HT16 on postharvest black spot disease of pear[J].Jiangsu Agricultural Sciences,2017,45(8):107.
[3]邢芳芳,高明夫,胡兆平,等.1株生防芽孢杆菌对黄瓜根结线虫的防治、促生作用及其鉴定[J].江苏农业科学,2017,45(08):101.
 Xing Fangfang,et al.Prevention and control of cucumber root-knot nematode by a bio-control bacillus strain and its identification[J].Jiangsu Agricultural Sciences,2017,45(8):101.
[4]宋胜男,郜玉钢,张雪,等.人参内生多黏类芽孢杆菌对农田人参生长和皂苷累积的影响[J].江苏农业科学,2019,47(11):155.
 Song Shengnan,et al.Effects of Paenibacillus polymyxa on growth and saponin accumulation of ginseng in farmland[J].Jiangsu Agricultural Sciences,2019,47(8):155.
[5]潘晓曦,关一鸣,李美佳,等.人参内生细菌GS-1的分离鉴定及对灰霉病菌的拮抗作用[J].江苏农业科学,2019,47(15):148.
 Pan Xiaoxi,et al.Isolation and identification of endophytic bacteria GS-1 isolated from ginseng and its antagonism to ginseng gray mold[J].Jiangsu Agricultural Sciences,2019,47(8):148.
[6]张艳茹,霍云凤,石红利,等.禾谷镰刀菌拮抗菌ZQT-9的鉴定与抑菌活性[J].江苏农业科学,2021,49(18):111.
 Zhang Yanru,et al.Identification and antifungal activity of antagonistic bacteria ZQT-9 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2021,49(8):111.
[7]何宇,吕卫光,张娟琴,等.生防菌对稻瘟病害控制的研究进展[J].江苏农业科学,2021,49(21):40.
 He Yu,et al.Research progress of biocontrol bacteria controlling rice blast disease[J].Jiangsu Agricultural Sciences,2021,49(8):40.
[8]牛永艳,朱瑞清,毛婷,等.多黏类芽孢杆菌SWS-15玉米促生效果测定及其废水发酵条件优化[J].江苏农业科学,2021,49(22):204.
 Niu Yongyan,et al.Growth-promoting effects of Bacillus polymyxoides SWS-15 on corn and optimization of wastewater fermentation conditions[J].Jiangsu Agricultural Sciences,2021,49(8):204.
[9]王娜,王彪,蔡灏漾,等.1株桑叶内生生防多黏类芽孢杆菌可湿性粉剂的制备及应用效果[J].江苏农业科学,2021,49(23):115.
 Wang Na,et al.Preparation and application of wettable powder of endophytic biocontrol bacteria Paenibacillus polymyxa isolated from mulberry leaves[J].Jiangsu Agricultural Sciences,2021,49(8):115.
[10]方佩,罗远婵,田黎,等.1株海洋芽孢杆菌对黄瓜灰霉病的防治效果及防治机制研究[J].江苏农业科学,2022,50(2):91.
 Fang Pei,et al.Biocontrol efficacy and mechanism of a marine Bacillus strain against cucumber gray mold[J].Jiangsu Agricultural Sciences,2022,50(8):91.

备注/Memo

备注/Memo:
收稿日期:2022-06-02
基金项目:黑龙江省自然科学基金(编号:LH2019C080、LH2019C079、LH2021C086、LH2021C087)。
作者简介:贺丹(1990—),女,黑龙江哈尔滨人,硕士,助理研究员,从事农业微生物、农业生态学研究。E-mail:448077927@qq.com。
更新日期/Last Update: 2023-04-20