|本期目录/Table of Contents|

[1]李佳佳,门海涛,高丽美.褪黑素的生理功能及应用研究进展[J].江苏农业科学,2023,51(8):17-26.
 Li Jiajia,et al.Research progress on physiological function and application of melatonin[J].Jiangsu Agricultural Sciences,2023,51(8):17-26.
点击复制

褪黑素的生理功能及应用研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第8期
页码:
17-26
栏目:
专论与综述
出版日期:
2023-04-20

文章信息/Info

Title:
Research progress on physiological function and application of melatonin
作者:
李佳佳门海涛高丽美
山西师范大学生命科学学院,山西太原 030031
Author(s):
Li Jiajiaet al
关键词:
褪黑素自由基清除剂抗氧化代谢生物胁迫非生物胁迫
Keywords:
-
分类号:
Q42;S184
DOI:
-
文献标志码:
A
摘要:
褪黑素(N-乙酰基-5甲氧基色胺)属于一类常见的吲哚杂环类小分子物质,是生物体内重要的内源性激素信号分子,在动、植物细胞生长发育和各种生理生化代谢过程中起着积极的调控作用。褪黑素最初在动物体中被发现,具有调节昼夜节律、清除自由基、改善机体睡眠质量、提高免疫力等多种生理功能。随后人们在植物各类组织或器官中也检测到了植物褪黑素。近年来,随着对植物褪黑素研究认识的不断深入,褪黑素在植物体内的具体合成途径及生理作用也越来越清晰,特别是褪黑素在参与缓解植物生物胁迫或非生物胁迫方面的作用及调控机制受到了广泛关注。本文从理化性质、生物合成途径、生理作用以及调控有机体生物胁迫和非生物胁迫响应等多个方面系统阐述了褪黑素的分子结构特点、生物学功能及其在生活生产领域中的应用现状,并展望了未来关于褪黑素信号分子感知环境信号及其作用机制是一个非常有趣的研究领域。本文将为深入探究褪黑素与有机体细胞互作的分子机制,促进褪黑素在工农业生产和人类生活中的推广应用提供理论参考。
Abstract:
-

参考文献/References:

[1]汪俊峰,余敏芬,李东宾,等. 褪黑素对模拟干旱胁迫下北美红栎幼树光合性能及抗氧化酶系统的影响[J]. 生态科学,2021,40(2):167-174.
[2]Hardeland R. Melatonin in plants-diversity of levels and multiplicity of functions[J]. Frontiers in Plant Science,2016,7:198.
[3]马征. 拟南芥褪黑素响应UV-B胁迫的功能和其合成酶表达研究[D]. 西安:西北大学,2019.
[4]Yao J W,Ma Z,Ma Y Q,et al. Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana[J]. Plant,Cell & Environment,2021,44(1):114-129.
[5]Arnao M B,Hernández-Ruiz J. Melatonin:a new plant hormone and/or a plant master regulator?[J]. Trends in Plant Science,2019,24(1):38-48.
[6]Bose S K,Howlader P. Melatonin plays multifunctional role in horticultural crops against environmental stresses:a review[J]. Environmental and Experimental Botany,2020,176:104063.
[7]KolárˇJ,Machácˇková I,Eder J,et al. Melatonin:occurrence and daily rhythm in Chenopodium rubrum[J]. Phytochemistry,1997,44(8):1407-1413.
[8]Murch S J,Simmons C B,Saxena P K. Melatonin in feverfew and other medicinal plants[J]. The Lancet,1997,350(9091):1598-1599.
[9]Manchester L C,Tan D X,Reiter R J,et al. High levels of melatonin in the seeds of edible plants:possible function in germ tissue protection[J]. Life Sciences,2000,67(25):3023-3029.
[10]Burkhardt S,Tan D X,Manchester L C,et al. Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus)[J]. Journal of Agricultural and Food Chemistry,2001,49(10):4898-4902.
[11]Tan D X,Manchester L C,Reiter R J,et al. Significance of melatonin in antioxidative defense system:reactions and products[J]. Biological Signals and Receptors,2000,9(3/4):137-159.
[12]Murch S J,Krishnaraj S,Saxena P K. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St.Johns wort (Hypericum perforatum L.cv. Anthos) plants[J]. Plant Cell Reports,2000,19(7):698-704.
[13]刘德帅,姚磊,徐伟荣,等. 褪黑素参与植物抗逆功能研究进展[J]. 植物学报,2022,57(1):111-126.
[14]Hattori A,Migitaka H,Iigo M,et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates[J]. Biochemistry and Molecular Biology International,1995,35(3):627-634.
[15]Moustafa-Farag M,Almoneafy A,Mahmoud A,et al. Melatonin and its protective role against biotic stress impacts on plants[J]. Biomolecules,2019,10(1):54.
[16]Dubbels R,Reiter R J,Klenke E,et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry[J]. Journal of Pineal Research,1995,18(1):28-31.
[17]Sharif R,Xie C,Zhang H,et al. Melatonin and its effects on plant systems[J]. Molecules,2018,23(9):2352.
[18]Tan D X. Melatonin and brain[J]. Current Neuropharmacology,2010,8(3):161.
[19]Tan D X,Hardeland R,Back K,et al. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine:comparisons across species[J]. Journal of Pineal Research,2016,61(1):27-40.
[20]Murch S J,Alan A R,Cao J,et al. Melatonin and serotonin in flowers and fruits of Datura metel L.[J]. Journal of Pineal Research,2009,47(3):277-283.
[21]Back K,Tan D X,Reiter R J. Melatonin biosynthesis in plants:multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts[J]. Journal of Pineal Research,2016,61(4):426-437.
[22]王睿劼. 植物褪黑素合成关键酶的生物信息学分析暨转mgfp-5基因烟草的愈伤诱导[D]. 西安:西北大学,2017.
[23]Tan D X,Hardeland R,Manchester L C,et al. The changing biological roles of melatonin during evolution:from an antioxidant to signals of darkness,sexual selection and fitness[J]. Biological Reviews,2010,85(3):607-623.
[24]王萌. 外源褪黑素对NaCl胁迫下北美豆梨和杜梨生理特性的影响[D]. 保定:河北农业大学,2021.
[25]Tan D X,Manchester L C,di Mascio P,et al. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth:importance for phytoremediation[J]. The FASEB Journal,2007,21(8):1724-1729.
[26]Tilden A R,Rasmussen P,Awantang R M,et al. Melatonin cycle in the fiddler crab Uca pugilator and influence of melatonin on limb regeneration[J]. Journal of Pineal Research,1997,23(3):142-147.
[27]冯佳倩,王天明,杨静文. 海洋动物中褪黑素信号系统的研究进展[J]. 海洋科学,2021,45(11):144-155.
[28]Sheng W L,Weng S J,Li F,et al. Immunohistological localization of Mel1a melatonin receptor in pigeon retina[J]. Nature and Science of Sleep,2021,13:113-121.
[29]Kinker G S,Ostrowski L H,Ribeiro P A C,et al. MT1 and MT2 melatonin receptors play opposite roles in brain cancer progression[J]. Journal of Molecular Medicine,2021,99(2):289-301.
[30]Yasmin F,Sutradhar S,Das P,et al. Gut melatonin:a potent candidate in the diversified journey of melatonin research[J]. General and Comparative Endocrinology,2021,303:113693.
[31]刘扬华,刘诗翔. 睡眠障碍的诊断及治疗概述[J]. 神经损伤与功能重建,2012,7(2):143-146.
[32]刘建忠,朱艳君,周丽芳. 褪黑素生理及药理作用研究进展[J]. 武汉科技大学学报(自然科学版),2004,27(2):198-201.
[33]Calvo J R,González-Yanes C,Maldonado M D. The role of melatonin in the cells of the innate immunity:a review[J]. Journal of Pineal Research,2013,55(2):103-120.
[34]谢爱萍,彭立核,李灵梅,等. 人体中内源性褪黑素作用及检测技术现状[J]. 中国卫生检验杂志,2019,29(22):2814-2816.
[35]Arnao M B,Hernández-Ruiz J. Functions of melatonin in plants:a review[J]. Journal of Pineal Research,2015,59(2):133-150.
[36]Tan D X,Manchester L C,Terron M P,et al. One molecule,many derivatives:a never-ending interaction of melatonin with reactive oxygen and nitrogen species? [J]. Journal of Pineal Research,2007,42(1):28-42.
[37]Yu J C,Lu J Z,Cui X Y,et al. Melatonin mediates reactive oxygen species homeostasis via SlCV to regulate leaf senescence in tomato plants[J]. Journal of Pineal Research,2022,73(2):e12810.
[38]Zeng H Q,Bai Y J,Wei Y X,et al. Phytomelatonin as a central molecule in plant disease resistance[J]. Journal of Experimental Botany,2022,73(17):5874-5885.
[39]Zhu J K. Abiotic stress signaling and responses in plants[J]. Cell,2016,167(2):313-324.
[40]Zhu L,Guo J S,Zhu J,et al. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry,2014,75:24-35.
[41]贾学静,董立花,丁春邦,等. 干旱胁迫对金心吊兰叶片活性氧及其清除系统的影响[J]. 草业学报,2013,22(5):248-255.
[42]Tan W,Meng Q W,Brestic M,et al. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants[J]. Journal of Plant Physiology,2011,168(17):2063-2071.
[43]Shah Jahan M,Wang Y,Shu S,et al. Exogenous salicylic acid increases the heat tolerance in tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species[J]. Scientia Horticulturae,2019,247:421-429.
[44]Jahan M S,Shu S,Wang Y,et al. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis[J]. BMC Plant Biology,2019,19(1):414.
[45]Shanmugam S,Kjaer K H,Ottosen C O,et al. The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars[J]. Journal of Agronomy and Crop Science,2013,199(5):340-350.
[46]Berry J,Bjrkman O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annual Review of Plant Physiology,1980,31:491-543.
[47]Kattge J,Knorr W. Temperature acclimation in a biochemical model of photosynthesis:a reanalysis of data from 36 species[J]. Plant,Cell & Environment,2007,30(9):1176-1190.
[48]Rexroth S,Mullineaux C W,Ellinger D,et al. The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains[J]. The Plant Cell,2011,23(6):2379-2390.
[49]Müller P,Li X P,Niyogi K K. Non-photochemical quenching. A response to excess light energy[J]. Plant Physiology,2001,125(4):1558-1566.
[50]Takagi D,Takumi S,Hashiguchi M,et al. Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem Ⅰ photoinhibition[J]. Plant Physiology,2016,171(3):1626-1634.
[51]解玉玲. 高温胁迫对植物生理影响的研究进展[J]. 吉林农业,2019(8):107-108.
[52]徐向东,孙艳,郭晓芹,等. 褪黑素对高温胁迫下黄瓜幼苗抗坏血酸代谢系统的影响[J]. 应用生态学报,2010,21(10):2580-2586.
[53]Jahan M S,Shu S,Wang Y,et al. Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA-and GA-mediated pathways[J]. Frontiers in Plant Science,2021,12:650955.
[54]丁红映,王明,谢洁,等. 植物低温胁迫响应及研究方法进展[J]. 江苏农业科学,2019,47(14):31-36.
[55]李贺. 褪黑素对大豆苗期低温胁迫抗性的调控作用[D]. 大庆:黑龙江八一农垦大学,2021.
[56]娄慧,赵曾强,朱金成,等. 褪黑素对低温胁迫下棉花种子萌发特性的影响[J]. 中国农学通报,2021,37(35):13-19.
[57]Li H,Chang J J,Zheng J X,et al. Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport[J]. Scientific Reports,2017,7:40858.
[58]Li J H,Arkorful E,Cheng S Y,et al. Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant [Camellia sinensis (L.) O.Kuntze][J]. Scientia Horticulturae,2018,238:356-362.
[59]罗会英,金杰,赵琼玲,等. 辣木干旱胁迫研究进展[J]. 中国热带农业,2021(4):21-23,72.
[60]何小三,徐林初,龚春,等. 干旱胁迫对‘赣无12’苗期光合特性的影响[J]. 中南林业科技大学学报,2018,38(12):52-61.
[61]邓辉茗,龙聪颖,蔡仕珍,等. 不同水分胁迫对绵毛水苏幼苗形态和生理特性的影响[J]. 西北植物学报,2018,38(6):1099-1108.
[62]郑鹏丽,黄晓蓉,费永俊,等. 水分胁迫对桢楠幼树光合生理特性的影响[J]. 中南林业科技大学学报,2019,39(10):64-70.
[63]Campos C N,vila R G,de Souza K R D. Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants[J]. Agricultural Water Management,2019,211:37-47.
[64]Meng J F,Xu T F,Wang Z Z,et al. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress:antioxidant metabolites,leaf anatomy,and chloroplast morphology[J]. Journal of Pineal Research,2014,57(2):200-212.
[65]Zou J N,Yu H,Yu Q,et al. Physiological and UPLC-MS/MS widely targeted metabolites mechanisms of alleviation of drought stress-induced soybean growth inhibition by melatonin[J]. Industrial Crops and Products,2021,163:113323.
[66]邹京南,曹亮,王梦雪,等. 外源褪黑素对干旱胁迫下大豆结荚期光合及生理的影响[J]. 生态学杂志,2019,38(9):2709-2718.
[67]古咸彬,陆玲鸿,宋根华,等. 外源褪黑素预处理对干旱胁迫下桃苗生长的缓解效应[J]. 植物生理学报,2022,58(2):309-318.
[68]佟莉蓉,倪顺刚,任星远,等. 褪黑素对干旱胁迫下达乌里胡枝子幼苗生长及叶片水分生理的影响[J]. 草地学报,2021,29(8):1682-1688.
[69]Khattak W A,He J Q,Abdalmegeed D,et al. Foliar melatonin stimulates cotton boll distribution characteristics by modifying leaf sugar metabolism and antioxidant activities during drought conditions[J]. Physiologia Plantarum,2022,174(1):e13526.
[70]Imran M,Latif Khan A,Shahzad R,et al. Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants[J]. AoB Plants,2021,13(4):plab026.
[71]Choudhary S,Wani K I,Naeem M,et al. Cellular responses,osmotic adjustments,and role of osmolytes in providing salt stress resilience in higher plants:polyamines and nitric oxide crosstalk[J]. Journal of Plant Growth Regulation,2023,42:539-553.
[72]孙浩月,吴洪斌,李明,等. 褪黑素浸种对盐胁迫下芸豆幼苗生长及生理特性的影响[J]. 河南农业科学,2021,50(12):111-120.
[73]Zhang H J,Zhang N,Yang R C,et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems,ABA and GA4 interaction in cucumber (Cucumis sativus L.)[J]. Journal of Pineal Research,2014,57(3):269-279.
[74]Liang C Z,Zheng G Y,Li W Z,et al. Melatonin delays leaf senescence and enhances salt stress tolerance in rice[J]. Journal of Pineal Research,2015,59(1):91-101.
[75]Wei L,Zhao H Y,Wang B X,et al. Exogenous melatonin improves the growth of rice seedlings by regulating redox balance and ion homeostasis under salt stress[J]. Journal of Plant Growth Regulation,2022,41(6):2108-2121.
[76]Yan Y Y,Jing X,Tang H M,et al. Using transcriptome to discover a novel melatonin-induced sodic alkaline stress resistant pathway in Solanum lycopersicum L.[J]. Plant and Cell Physiology,2019,60(9):2051-2064.
[77]Zhang Y X,Fan Y P,Rui C,et al. Melatonin improves cotton salt tolerance by regulating ROS scavenging system and Ca2+ signal transduction[J]. Frontiers in Plant Science,2021,12:693690.
[78]Xu L L,Xiang G Q,Sun Q H,et al. Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines[J]. Horticulture Research,2019,6:114.
[79]Li Z Y,Ma Z W,van der Kuijp T J,et al. A review of soil heavy metal pollution from mines in China:pollution and health risk assessment[J]. Science of The Total Environment,2014,468/469:843-853.
[80]Figlioli F,Sorrentino M C,Memoli V,et al. Overall plant responses to Cd and Pb metal stress in maize:growth pattern,ultrastructure,and photosynthetic activity[J]. Environmental Science and Pollution Research,2019,26(2):1781-1790.
[81]Yadav S K. Heavy metals toxicity in plants:an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants[J]. South African Journal of Botany,2010,76(2):167-179.
[82]Gu Q,Chen Z P,Yu X L,et al. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis[J]. Plant Science,2017,261:28-37.
[83]Hodzic E,Galijasevic S,Balaban M,et al. The protective role of melatonin under heavy metal-induced stress in Melissa officinalis L.[J]. Turkish Journal of Chemistry,2021,45(3):737-748.
[84]Xu L,Zhang F,Tang M J,et al. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants[J]. Journal of Pineal Research,2020,69(1):e12659.
[85]Ulhassan Z,Huang Q,Gill R A,et al. Protective mechanisms of melatonin against selenium toxicity in Brassica napus:insights into physiological traits,thiol biosynthesis and antioxidant machinery[J]. BMC Plant Biology,2019,19(1):507.
[86]Nawaz M A,Jiao Y Y,Chen C,et al. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression[J]. Journal of Plant Physiology,2018,220:115-127.
[87]Vanhaelewyn L,van der Straeten D,de Coninck B,et al. Ultraviolet radiation from a plant perspective:the plant-microorganism context[J]. Frontiers in plant science,2020,11:597642.
[88]万丽嫱,李光达,和秋兰,等. 外源褪黑素对UV-B辐射下马铃薯光合、荧光特性的影响[J]. 华北农学报,2021,36(4):116-123.

相似文献/References:

[1]王淑娟,刘文举,王立克,等.褪黑激素对雌性动物生殖系统调节作用的研究进展[J].江苏农业科学,2016,44(06):15.
 Wang Shujuan,et al.Research progress of regulating effect of mellocated atonin on female reproductive system[J].Jiangsu Agricultural Sciences,2016,44(8):15.
[2]张来军,贾敬芬,王凤琴,等.外源褪黑素对离体培养虎杖生长的影响[J].江苏农业科学,2015,43(08):58.
 Zhang Laijun,et al.Effect of exogenous melatonin on in vitro culture of Polygonum cuspidatum[J].Jiangsu Agricultural Sciences,2015,43(8):58.
[3]李爱,孙汪亮,李林,等.外源褪黑素对干旱胁迫下紫苏幼苗生长的影响[J].江苏农业科学,2018,46(02):70.
 Li Ai,et al.Impact of exogenous melatonin on growth of Perilla frutescens seedlings under drought stress[J].Jiangsu Agricultural Sciences,2018,46(8):70.
[4]王薇薇,沈峰,吴永成,等.褪黑素生物合成及其在植物逆境胁迫中的作用综述[J].江苏农业科学,2022,50(1):1.
 Wang Weiwei,et al.Biosynthesis of melatonin and its role in plant stress:a review[J].Jiangsu Agricultural Sciences,2022,50(8):1.
[5]郭爱华,曹媛.不同调节剂浸种对苦苣菜种子萌发及幼苗生长的影响[J].江苏农业科学,2022,50(9):148.
 Guo Aihua,et al.Effects of different regulators on seed germination and seedling growth of Sonchus oleraceus L.[J].Jiangsu Agricultural Sciences,2022,50(8):148.
[6]郭爱华.外源褪黑素对盐胁迫下苦菜幼苗生长的影响[J].江苏农业科学,2022,50(13):153.
 Guo Aihua.Influences of exogenous melatonin on seedling growth of Sonchus oleraceus L. under salt stress[J].Jiangsu Agricultural Sciences,2022,50(8):153.
[7]叶欣悦,闫见敏,杨雪莲,等.SlCOMT1基因克隆及在番茄组织器官中的表达和褪黑素生物合成变化[J].江苏农业科学,2022,50(23):49.
 Ye Xinyue,et al.Cloning of SlCOMT1 gene and its expression in tomato tissues and melatonin biosynthesis[J].Jiangsu Agricultural Sciences,2022,50(8):49.
[8]李平平,张永清,张萌,等.褪黑素浸种对混合盐碱胁迫下藜麦生长及生理的影响[J].江苏农业科学,2023,51(4):77.
 Li Pingping,et al.Influences of seed soaking with melatonin on growth and physiology of quinoa under mixed salt-alkali stress[J].Jiangsu Agricultural Sciences,2023,51(8):77.
[9]刘莹,万丽嫱,海梅荣.外源褪黑素对UV-B辐射下马铃薯苗期叶片抗氧化物和过氧化氢的影响[J].江苏农业科学,2023,51(9):60.
 Liu Ying,et al.Effects of exogenous melatonin on leaf antioxidant and hydrogen peroxide in potato seedlings under UV-B radiation[J].Jiangsu Agricultural Sciences,2023,51(8):60.
[10]韩蕾蕾,张乐乐,王慧娟,等.丛枝菌根真菌对镉胁迫小麦褪黑素代谢的调节作用[J].江苏农业科学,2023,51(17):59.
 Han Lielei,et al.Regulation of melatonin metabolism in cadmium-stressed wheat by arbuscular mycorrhizal fungi [JY。]Han Lielei,et al(59)[J].Jiangsu Agricultural Sciences,2023,51(8):59.

备注/Memo

备注/Memo:
收稿日期:2022-06-16
基金项目:山西省青年科技基金(编号:201801D221260)。
作者简介:李佳佳(1997—),女,山西忻州人,硕士研究生,主要从事植物细胞生物学研究。E-mail:1845999496@qq.com。
通信作者:高丽美,博士,硕士生导师,主要从事植物细胞生物学研究。E-mail:limeigao1122@126.com。
更新日期/Last Update: 2023-04-20