[1]中国科学院中国植物志编辑委员会. 中国植物志(第7卷)[M]. 北京:科学出版社,1978.
[2]FAO. FAOSTAT[DB/OL].[2022-06-01]. https://www.fao.org/faostat/en/#data/QCL.
[3]杨泳波,赵远洋,李振波,等. 基于胶囊SE-Inception的茄科病害识别方法研究[J]. 图学学报,2022,43(1):28-35.
[4]Scholthof K B G,Adkins S,Czosnek H,et al. Top 10 plant viruses in molecular plant pathology[J]. Molecular Plant Pathology,2011,12(9):938-954.
[5]Rybicki E P. A Top Ten list for economically important plant viruses[J]. Archives of Virology,2015,160(1):17-20.
[6]Panno S,Davino S,Caruso A G,et al. A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean Basin[J]. Agronomy,2021,11(11):2188.
[7]King K C,Lively C M. Does genetic diversity limit disease spread in natural host populations?[J]. Heredity,2012,109(4):199-203.
[8]Singh V K,Singh A K,Kumar A. Disease management of tomato through PGPB:current trends and future perspective[J]. 3 Biotech,2017,7(4):255.
[9]程术希. 基于光谱和成像技术的作物病害不同侵染期快速检测方法研究[D]. 杭州:浙江大学,2014:2-3.
[10]Martinelli F,Scalenghe R,Davino S,et al. Advanced methods of plant disease detection[J]. Agronomy for Sustainable Development,2015,35(1):1-25.
[11]王彦翔,张艳,杨成娅,等. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报,2019,31(4):669-676.
[12]党满意,孟庆魁,谷芳,等. 基于机器视觉的马铃薯晚疫病快速识别[J]. 农业工程学报,2020,36(2):193-200.
[13]Chen X,Zhou G,Chen A,et al. Identification of tomato leaf diseases based on combination of ABCK-BWTR and B-ARNet[J]. Computers and Electronics in Agriculture,2020,178:105730.
[14]Trivedi N K,Gautam V,Anand A,et al. Early detection and classification of tomato leaf disease using high-performance deep neural network[J]. Sensors,2021,21(23):7987.
[15]Berni J,Zarco-Tejada P J,G Sepulcre-Cantó,et al. Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery[J]. Remote Sensing of Environment,2009,113(11):2380-2388.
[16]徐小龙,蒋焕煜,杭月兰. 热红外成像用于番茄花叶病早期检测的研究[J]. 农业工程学报,2012,28(5):145-149.
[17]Raza S E A,Prince G,Clarkson J P,et al. Automatic detection of diseased tomato plants using thermal and stereo visible light images[J]. PLoS One,2015,10(4):e0123262.
[18]朱文静,李林,李美清,等. 红外热成像与近红外光谱结合快速检测潜育期番茄花叶病[J]. 光谱学与光谱分析,2018,38(9):2757-2762.
[19]Chaerle L,Caeneghem W V,Messens E,et al. Presymptomatic visualization of plant-virus interactions by thermography[J]. Nature Biotechnology,1999,17(8):813-816.
[20]冯雷,高吉兴,何勇,等. 波谱成像技术在作物病害信息早期检测中的研究进展[J]. 农业机械学报,2013,44(9):169-176.
[21]Morellos A,Tziotzios G,Orfanidou C,et al. Non-destructive early detection and quantitative severity stage classification of Tomato Chlorosis Virus (ToCV) infection in young tomato plants using vis-NIR Spectroscopy[J]. Remote Sensing,2020,12(12):1920.
[22]Najjar K,Abu-Khalaf N.Visible/near-infrared (vis/nir) spectroscopy technique to detect gray mold disease in the early stages of tomato fruit[J]. Journal of Microbiology,Biotechnology and Food Sciences,2021,11(2):e3108.
[23]Azadshahraki F,Sharifi K,Jamshidi B,et al. Diagnosis of early blight disease in tomato plant based on visible/near-infrared spectroscopy and principal components analysis-artificial neural network prior to visual disease symptoms[J]. Infrared Spectroscopy,2022,12(1):81-94.
[24]Vallejo-Pérez M R,Sosa-Herrera J A,Navarro-Contreras H R,et al. Raman spectroscopy and machine-learning for early detection of bacterial canker of tomato:the asymptomatic disease condition[J]. Plants,2021,10(8):1542.
[25]Jones C D,Jones J B,Lee W S. Diagnosis of bacterial spot of tomato using spectral signatures[J]. Computers & Electronics in Agriculture,2010,74(2):329-335.
[26]张德荣,方慧,何勇. 可见/近红外光谱图像在作物病害检测中的应用[J]. 光谱学与光谱分析,2019,39(6):1748-1756.
[27]Hunt Jr E R,Rock B N. Detection of changes in leaf water content using near-and middle-infrared reflectances[J]. Remote Sensing of Environment,1989,30(1):43-54.
[28]Rollin E M,Milton E J. Processing of high spectral resolution reflectance data for the retrieval of canopy water content information[J]. Remote Sensing of Environment,1998,65(1):86-92.
[29]刘畅,孙鹏森,刘世荣. 植物反射光谱对水分生理变化响应的研究进展[J]. 植物生态学报,2016,40(1):80-91.
[30]Rouse Jr J W,Haas R H,Schell J A,et al. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation[R]. Maryland:Goddard Space Flight Center,1973.
[31]金仲辉. 绿色植物反射光谱的特征及其在监测农作物生长中的应用[J]. 物理,1993,22(11):673-678.
[32]Kokaly R F,Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J]. Remote Sensing of Environment,1999,67(3):267-287.
[33]谢传奇,王佳悦,冯雷,等. 应用高光谱图像光谱和纹理特征的番茄早疫病早期检测研究[J]. 光谱学与光谱分析,2013,33(6):1603-1607.
[34]王海龙,杨国国,张瑜,等. 竞争性自适应重加权算法和相关系数法提取特征波长检测番茄叶片真菌病害[J]. 光谱学与光谱分析,2017,37(7):2115-2119.
[35]Lu J Z,Zhou M C,Gao Y W,et al. Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves[J]. Precision Agriculture,2018,19(3):379-394.
[36]Abdulridha J,Ampatzidis Y,Qureshi J,et al. Laboratory and UAV-based identification and classification of tomato yellow leaf curl,bacterial spot,and target spot diseases in tomato utilizing hyperspectral imaging and machine learning[J]. Remote Sensing,2020,12(17):2732.
[37]Atherton D,Choudhary R,Watson D. Hyperspectral remote sensing for advanced detection of early blight (Alternaria solani) disease in potato (Solanum tuberosum) plants prior to visual disease symptoms[C]//American Society of Agricultural and Biological Engineers Anual International Meeting.Spokane,2017.
[38]徐明珠. 基于高光谱成像技术的马铃薯早疫病无损检测研究[D]. 杨凌:西北农林科技大学,2016:13-26.
[39]Appeltans S,Pieters J G,Mouazen A M. Potential of laboratory hyperspectral data for in-field detection of Phytophthora infestans on potato[J]. Precision Agriculture,2022,23(3):876-893.
[40]黄涛,李小昱,徐梦玲,等. 半透射高光谱成像技术与支持向量机的马铃薯空心病无损检测研究[J]. 光谱学与光谱分析,2015,35(1):198-202.
[41]Zhu H Y,Chu B Q,Zhang C,et al. Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers[J]. Scientific Reports,2017,7:4125.
[42]刘勇昌,耿丽,高强,等. 基于叶片光谱分析的烟草马铃薯Y病毒病严重度诊断[J]. 烟草科技,2021,54(7):23-28.
[43]Gu Q,Sheng L,Zhang T H,et al. Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms[J]. Computers and Electronics in Agriculture,2019,167:105066.
[44]冯雷,张德荣,陈双双,等. 基于高光谱成像技术的茄子叶片灰霉病早期检测[J]. 浙江大学学报(农业与生命科学版),2012,38(3):311-317.
[45]Gold K M,Townsend P A,Chlus A,et al. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato[J]. Remote Sensing,2020,12(2):286.
[1]周帅,卢扬,陈恩发,等.茄科植物黄萎病研究进展[J].江苏农业科学,2022,50(14):1.
Zhou Shuai,et al.Research progress on verticillium wilt of Solanaceae species[J].Jiangsu Agricultural Sciences,2022,50(9):1.