[1]Grey B E,Steck T R. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection[J]. Applied and Environmental Microbiology,2001,67(9):3866-3872.
[2]Genin S,Denny T P. Pathogenomics of the Ralstonia solanacearum species complex[J]. Annual Review of Phytopathology,2012,50:67-89.
[3]Mamphogoro T P,Babalola O O,Aiyegoro O A. Sustainable management strategies for bacterial wilt of sweet peppers (Capsicum annuum) and other Solanaceous crops[J]. Journal of Applied Microbiology,2020,129(3):496-508.
[4]Jiang G,Wei Z,Xu J,et al. Bacterial wilt in China: history,current status,and future perspectives[J]. Frontiers in Plant Science,2017,8:1549.
[5]Messiha N A S,van Bruggen A H C,Franz E,et al. Effects of soil type,management type and soil amendments on the survival of the potato brown rot bacterium Ralstonia solanacearum[J]. Applied Soil Ecology,2009,43(2/3):206-215.
[6]Vasse J,Danoun S,Trigalet A. Microscopic studies of root infection in resistant tomato cultivar Hawaii7996[J]. Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex,2005:285-291.
[7]Kwak M J,Kong H G,Choi K,et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology,2018,36:1100-1109.
[8]Mansfield J,Genin S,Magori S,et al. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Molecular Plant Pathology,2012,13(6):614-629.
[9]Shen G H,Zhang S T,Liu X J,et al. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field[J]. Applied Microbiology and Biotechnology,2018,102(22):9781-9791.
[10]Gao Y,Lu Y,Lin W P,et al. Biochar suppresses bacterial wilt of tomato by improving soil chemical properties and shifting soil microbial community[J]. Microorganisms,2019,7(12):676.
[11]刘业霞,付玲,艾希珍,等. 嫁接辣椒根系特征及根际土壤酶活性与青枯病抗性的关系[J]. 西北植物学报,2012,32(5):963-968.
[12]樊俊,谭军,王瑞,等. 烟草青枯病发病程度的影响因素分析[J]. 烟草科技,2021,54(10):20-28.
[13]Nakahara H,Mori K,Mori T,et al. Induction of spontaneous phenotype conversion in Ralstonia solanacearum by addition of iron compounds in liquid medium[J]. Journal of Microbiological Methods,2021,186:106233.
[14]高升升. 高氮投入促进烟草青枯病暴发机理研究[D]. 重庆:西南大学,2020:26-32.
[15]Wu K,Su L,Fang Z Y,et al. Competitive use of root exudates by Bacillus amyloliquefaciens with Ralstonia solanacearum decreases the pathogenic population density and effectively controls tomato bacterial wilt[J]. Scientia Horticulturae,2017,218:132-138.
[16]李石力. 有机酸类根系分泌物影响烟草青枯病发生的机制研究[D]. 重庆:西南大学,2017:7-18,21-65.
[17]马超,杨欣润,江高飞,等. 病原青枯菌土壤存活的影响因素研究进展[J]. 土壤学报,2021,58(6):1359-1367.
[18]Chen X X,Zhang H K,Li J K,et al. Analysis of chemical compounds of pomegranate peel polyphenols and their antibacterial action against Ralstonia solanacearum[J]. South African Journal of Botany,2021,140:4-10.
[19]Yu M X,Wang Y P,Baldock J A,et al. Divergent responses of soil organic carbon accumulation to 14 years of nitrogen addition in two typical subtropical forests[J]. Science of the Total Environment,2020,707:136104.
[20]戴辉,周嘉聪,曾泉鑫,等. 短期氮添加对黄山松林土壤碳组分的影响及其微生物机制[J]. 环境科学学报,2022,42(9):291-300.
[21]Schmidt H P,Kammann C,Niggli C,et al. Biochar and biochar-compost as soil amendments to a vineyard soil:influences on plant growth,nutrient uptake,plant health and grape quality[J]. Agriculture,Ecosystems & Environment,2014,191:117-123.
[22]丛萍,李玉义,高志娟,等. 秸秆颗粒化高量还田快速提高土壤有机碳含量及小麦玉米产量[J]. 农业工程学报,2019,35(1):148-156.
[23]Cao Y F,Thomashow L S,Luo Y,et al. Resistance to bacterial wilt caused by Ralstonia solanacearum depends on the nutrient condition in soil and applied fertilizers:a meta-analysis[J]. Agriculture,Ecosystems & Environment,2022,329:107874.
[24]王晴,张大琪,方文生,等. 土壤熏蒸对土壤氮循环及其功能微生物的影响研究进展[J]. 农药学学报,2021,23(6):1063-1072.
[25]Wang R Q,Xiao Y P,Lv F J,et al. Bacterial community structure and functional potential of rhizosphere soils as influenced by nitrogen addition and bacterial wilt disease under continuous sesame cropping[J]. Applied Soil Ecology,2018,125:117-127.
[26]Davey R S,McNeill A,Barnett S,et al. Potential for suppression of Rhizoctonia root rot is influenced by nutrient (N and P) and carbon inputs in a highly calcareous coarse-textured topsoil[J]. Soil Research,2021,59(4):329-345.
[27]孙战,李明,魏永成,等. 木麻黄青枯病发生与土壤五种元素含量分析[J]. 分子植物育种,2023,21(4):1313-1321.
[28]Morikawa C K. Generation of hydroxyl radicals by Fe-polyphenol-activated CaO2 as a potential treatment for soil-borne diseases[J]. Scientific Reports,2018,8(1):9752.
[29]郑世燕. 矿质营养Mo对烟草抗青枯病的影响及生理生化机理[D]. 重庆:西南大学,2014:66-67.
[30]张淑婷. 铝离子影响烟草青枯病发生的机制研究[D]. 重庆:西南大学,2018:18-20.
[31]韦中,王佳宁,江高飞,等. 土传病原细菌的生存与致病权衡[J]. 土壤学报,2022,59(2):324-333.
[32]Caruso P,Palomo J L,Bertolini E,et al. Seasonal variation of Ralstonia solanacearum biovar 2 populations in a Spanish river:recovery of stressed cells at low temperatures[J]. Applied and Environmental Microbiology,2005,71(1):140-148.
[33]刘宪臣. 温湿度对烟草青枯病发生的影响及调控技术研究[D]. 重庆:西南大学,2014:41-42.
[34]Li S L,Liu Y Q,Wang J,et al. Soil acidification aggravates the occurrence of bacterial wilt in South China[J]. Frontiers in Microbiology,2017,8:703.
[35]Qiu Y,Lv W C,Wang X P,et al. Long-term effects of gravel mulching and straw mulching on soil physicochemical properties and bacterial and fungal community composition in the Loess Plateau of China[J]. European Journal of Soil Biology,2020,98:103188.
[36]Mi Y Z,Zhao X L,Liu F F,et al. Changes in soil quality,bacterial community and anti-pepper Phytophthora disease ability after combined application of straw and multifunctional composite bacterial strains[J]. European Journal of Soil Biology,2021,105:103329.
[37]Nwokolo N L,Enebe M C,Chigor C B,et al. The contributions of biotic lines of defence to improving plant disease suppression in soils:a review[J]. Rhizosphere,2021,19:100372.
[38]Yang T J,Wei Z,Friman V P,et al. Resource availability modulates biodiversity-invasion relationships by altering competitive interactions[J]. Environmental Microbiology,2017,19(8):2984-2991.
[39]段曦,孙晨晨,孙胜楠,等. 嫁接辣椒根系分泌物对根腐病和青枯病的影响[J]. 园艺学报,2017,44(2):297-306.
[40]谷益安. 土壤细菌群落和根系分泌物影响番茄青枯病发生的生物学机制[D]. 南京:南京农业大学,2017:62-65.
[41]Tian J H,Rao S,Gao Y,et al. Wheat straw biochar amendment suppresses tomato bacterial wilt caused by Ralstonia solanacearum:potential effects of rhizosphere organic acids and amino acids[J]. Journal of Integrative Agriculture,2021,20(9):2450-2462.
[42]Liu Y X,Li X,Cai K,et al. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms[J]. Applied Soil Ecology,2015,93:78-87.
[43]张海龙,武润琴,李佳佳,等. 根系分泌物C ∶N对刺槐林地土壤理化特征和土壤呼吸的影响[J]. 应用生态学报,2022,33(4):949-956.
[44]Yang T J,Han G,Yang Q J,et al. Resource stoichiometry shapes community invasion resistance via productivity-mediated species identity effects[J]. Proceedings of the Royal Society(Biological Sciences),2018,285(1893):20182035.
[45]Wen T,Yu G H,Hong W D,et al. Root exudate chemistry affects soil carbon mobilization via microbial community reassembly[J]. Fundamental Research,2022,2(5):697-707.
[46]Wang R,Zhang H C,Sun L G,et al. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Scientific Reports,2017,7:343.
[47]覃仁柳,林刚云,吴银秀,等. 桑树青枯病与根际土壤肥力及微生物群落结构特征的研究[J]. 中国生物防治学报,2021,37(6):1256-1264.
[48]侯金凤,申民翀,孙菲菲,等. 番茄连作青枯病不同发病时期的非根际土壤细菌群落变化特征[J]. 微生物学报,2022,62(9):3464-3477.
[49]Shen X H,Zhou N Y,Liu S J.Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum:another potential for applications for this bacterium?[J]. Applied Microbiology and Biotechnology,2012,95(1):77-89.
[50]Osei O,Abaidoo R C,Ahiabor B D K,et al. Bacteria related to Bradyrhizobium yuanmingense from Ghana are effective groundnut micro-symbionts[J]. Applied Soil Ecology,2018,127:41-50.
[51]Liu Y Q,Wang Y H,Kong W L,et al. Identification,cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels[J]. AMB Express,2020,10(1):108.
[52]Chen S,Qi G F,Ma G Q,et al. Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community[J]. Microbiological Research,2020,231:126373.
[53]Cheng J N,Jin H,Zhang J L,et al. Effects of allelochemicals,soil enzyme activities,and environmental factors on rhizosphere soil microbial community of Stellera chamaejasme L. along a growth-coverage gradient[J]. Microorganisms,2022,10(1):158.
[54]Gao D C,Bai E,Yang Y,et al. A global meta-analysis on freeze-thaw effects on soil carbon and phosphorus cycling[J]. Soil Biology and Biochemistry,2021,159:108283.
[55]Gao D C,Bai E,Li M H,et al. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles:a meta-analysis[J]. Soil Biology and Biochemistry,2020,148:107896.
[56]孙战,王圣洁,杨锦昌,等. 木麻黄根区土壤理化特性及酶活性与青枯病发生关联分析[J]. 生态环境学报,2022,31(1):70-78.
[57]Mndzebele B,Ncube B,Fessehazion M,et al. Effects of cowpea-amaranth intercropping and fertiliser application on soil phosphatase activities,available soil phosphorus,and crop growth response[J]. Agronomy,2020,10(1):79.
[58]李得铭. 绿农林41号微生物复合菌肥对番茄青枯病防控效果的研究[D]. 海口:海南大学,2020:31-33.
[59]Delgado-Baquerizo M,Guerra C A,Cano-Díaz C,et al. The proportion of soil-borne pathogens increases with warming at the global scale[J]. Nature Climate Change,2020,10(6):550-554.
[60]Raaijmakers J,Mazzola M. Soil immune responses[J]. Science,2016,352:1392-1393.
[61]Deng X H,Zhang N,Shen Z Z,et al. Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporum[J]. Biofilms and Microbiomes,2021,7:33.
[62]Narasimhamurthy K,Soumya K,Udayashankar A C,et al. Elicitation of innate immunity in tomato by salicylic acid and Amomum nilgiricum against Ralstonia solanacearum[J]. Biocatalysis and Agricultural Biotechnology,2019,22:101414.
[63]赵世元. 黄腐酸诱导烟草抗青枯病的活性及初步机理研究[D]. 重庆:西南大学,2020:4-6.
[64]熊书萍,田时炳,蔡贵华,等. 番茄嫁接栽培技术研究[J]. 西南园艺,2004(3):1-3.
[65]韩松庭,丁伟. 烟草青枯病的化学防治研究进展[J]. 植物医生,2019,32(5):20-25.
[66]Yang F,Yuan H,Yi N. Natural resources,environment and the sustainable development[J]. Urban Climate,2022,42: 101-111.
[67]Celine J,Francois V,Claude A,et al. Soil health through soil disease suppression: which strategy from descriptors to indicators?[J]. Soil Biology and Biochemistry,2007,39(1):1-23.
[68]徐暄,侯旭东,蒋世昌.保护地辣椒土传病害绿色防控技术研究进展[J]. 安徽农学通报,2021,27(23):116-118.
[69]Nguyen M,Ranamukhaarachchi S.Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper[J]. Journal of Plant Pathology,2010,92:395-406.
[70]汪国平,林明宝,吴定华. 番茄青枯病抗性遗传研究进展[J]. 园艺学报,2004,31(3):403-407.
[71]赵文宗. 嫁接番茄抗青枯病特性及根系分泌物化感作用的研究[D]. 南宁:广西大学,2019:14-17.
[72]Sharma S,Katoch V,Banyal D K.Review on harnessing biotechnological tools for the development of stable bacterial wilt resistant solanaceous vegetable crops[J]. Scientia Horticulturae,2021,285:110158.
[73]French E,Kim B S,Rivera-Zuluaga K,et al. Whole root transcriptomic analysis suggests a role for auxin pathways in resistance to Ralstonia solanacearum in tomato[J]. Molecular Plant-Microbe Interactions,2018,31(4):432-444.
[74]李悦,范腕腕,袁高庆,等. 3,4,5-三羟基苯甲酸甲酯的抑菌特性及其对番茄青枯病的田间防治作用[J]. 农药,2014,53(11):845-848.
[75]Fan W W,Yuan G Q,Li Q Q,et al. Antibacterial mechanisms of methyl gallate against Ralstonia solanacearum[J]. Australasian Plant Pathology,2014,43(1):1-7.
[76]Santos B M,Gilreath J P,Motis T N,et al. Comparing methyl bromide alternatives for soilborne disease,nematode and weed management in fresh market tomato[J]. Crop Protection,2006,25(7):690-695.
[77]Mao L G,Jiang H Y,Wang Q X,et al. Efficacy of soil fumigation with dazomet for controlling ginger bacterial wilt (Ralstonia solanacearum) in China[J]. Crop Protection,2017,100:111-116.
[78]Zanón M J,Gutierrez L A,Myrta A. Spanish experiences with dimethyl disulfide (DMDS) on the control of root-knot Nematodes,Meloidogyne spp.,in fruiting vegetables in protected crops[J]. Acta Horticulturae,2014,1044:421-425.
[79]Yan D D,Wang Q X,Li Y,et al. Efficacy and economics evaluation of seed rhizome treatment combined with preplant soil fumigation on ginger soilborne disease,plant growth,and yield promotion[J]. Journal of the Science of Food and Agriculture,2022,102(5):1894-1902.
[80]袁高庆,陈媛媛,范腕腕,等. 3,4,5-三羟基苯甲酸甲酯防治番茄青枯病的物理作用方式及其对番茄根系次生代谢物质的影响[J]. 植物保护,2016,42(6):80-85.
[81]Ibekwe A M. Effects of fumigants on non-target organisms in soils[J]. Advances in Agronomy,2004,83: 1-35.
[82]李美芸. 拮抗放线菌的筛选及其生物有机肥对番茄青枯病的防控效果[D]. 南京:南京农业大学,2017:5-7.
[83]Ma L,Zhang H Y,Zhou X K,et al. Biological control tobacco bacterial wilt and black shank and root colonization by bio-organic fertilizer containing bacterium Pseudomonas aeruginosa NXHG29[J]. Applied Soil Ecology,2018,129:136-144.
[84]Wang X B,Liang G B.Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial wilt,Ralstonia solanacearum[J]. BioMed Research International,2014,2014:465435.
[85]Li C Y,Hu W C,Pan B,et al. Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-mediated induced systemic resistance controls bacterial wilt of tomato[J]. Pedosphere,2017,27(6):1135-1146.
[86]Boonraeng S,Punyoyai N. The utilization of agro-industrial waste for soil amendment and liquid biofertilizer mixed bacterial antagonist in eggplant production[J]. IOP Conference Series(Earth and Environmental Science),2021,883(1):012087.
[87]Zheng X F,Zhu Y J,Wang J P,et al. Combined use of a microbial restoration substrate and avirulent Ralstonia solanacearum for the control of tomato bacterial wilt[J]. Scientific Reports,2019,9:20091.
[88]Agarwal H,Dowarah B,Baruah P M,et al. Endophytes from Gnetum gnemon L. can protect seedlings against the infection of phytopathogenic bacterium Ralstonia solanacearum as well as promote plant growth in tomato[J]. Microbiological Research,2020,238:126503.
[89]唐琳,张焕丽. 源自3种茄科蔬菜土壤木霉菌的分离与鉴定[J]. 东北农业科学,2020,45(5):52-56.
[90]赖宝春,姚锦爱,戴瑞卿,等. 2株拮抗放线菌复合防治番茄青枯病的研究[J]. 中国生物防治学报,2021,37(5):1035-1040.
[91]王杰,龙世芳,王正文,等. 番茄青枯病防治研究进展[J]. 中国蔬菜,2020(1):22-30.
[92]Kochanek J,Soo R M,Martinez C,et al. Biochar for intensification of plant-related industries to meet productivity,sustainability and economic goals:a review[J]. Resources,Conservation and Recycling,2022,179:106109.
[93]Wang D,Jiang P K,Zhang H B,et al. Biochar production and applications in agro and forestry systems:a review[J]. Science of the Total Environment,2020,723:137775.
[94]Fan Y,Klemes J,Lee C T. Environmental performance and techno-economic feasibility of different biochar applications: an overview[J]. Chemical Engineering Transactions,2021,83: 469-474.
[95]李文静. 玉米秸秆生物炭对石灰性农田土壤微生物数量和功能的影响[D]. 太原:太原理工大学,2019:23-24.
[96]于玲玲,赵贵元,崔婧婧,等. 施用生物炭对玉米田土壤呼吸及水分利用效率的影响[J]. 江苏农业科学,2022,50(3):209-213.
[97]Zhu J H,Cao A C,Wu J J,et al. Effects of chloropicrin fumigation combined with biochar on soil bacterial and fungal communities and Fusarium oxysporum[J]. Ecotoxicology and Environmental Safety,2021,220:112414.
[98]Medeiros E V,Lima N T,Sousa L J R,et al. Biochar from different sources against tomato bacterial wilt disease caused by Ralstonia solanacearum[J]. Journal of Soil Science and Plant Nutrition,2022,22(1):540-548.
[99]胡瑞文,刘勇军,周清明,等. 生物炭对烤烟根际土壤微生物群落碳代谢的影响[J]. 中国农业科技导报,2018,20(9):49-56.
[100]张广雨,褚德朋,刘元德,等. 生物炭及海藻肥对烟草生长、土壤性状及青枯病发生的影响[J]. 中国烟草科学,2019,40(5):15-22.
[101]冯慧琳,付兵,任天宝,等. 生物炭对青枯病烟株的根际土壤微生物群落结构调控机制分析[J]. 农业资源与环境学报,2022,39(1):173-181.
[102]Li C J,Ahmed W,Li D F,et al. Biochar suppresses bacterial wilt disease of flue-cured tobacco by improving soil health and functional diversity of rhizosphere microorganisms[J]. Applied Soil Ecology,2022,171:104314.
[1]蒋晶,肖熙鸥,曹必好,等.茄子青枯病诱导的cDNA文库构建与鉴定[J].江苏农业科学,2014,42(04):22.
Jiang Jing,et al.Construction and identification of a cDNA library induced by bacterial wilt of eggplants[J].Jiangsu Agricultural Sciences,2014,42(9):22.
[2]吴晓宗,曾强,李红丽,等.拮抗菌生物有机肥对植烟土壤和烟草青枯病的影响[J].江苏农业科学,2017,45(15):88.
Wu Xiaozong,et al.Effects of bio-organic fertilizer on planting soil and tobacco bacterial wilt[J].Jiangsu Agricultural Sciences,2017,45(9):88.
[3]曹鹏飞,陈银华,周慧娟,等.抗青枯病病菌植物杀菌剂的研究[J].江苏农业科学,2017,45(22):102.
Cao Pengfei,et al.Study on plant bactericide against bacterial wilt[J].Jiangsu Agricultural Sciences,2017,45(9):102.
[4]胡广宇,宋旸.不同热解温度园林废弃物生物质炭对设施连作番茄产量、品质及青枯病的影响[J].江苏农业科学,2021,49(23):156.
Hu Guangyu,et al.Influences of garden waste biochar pyrolyzed at varying temperatures on yield,quality and bacterial wilt of tomato under continuous cropping in greenhouse[J].Jiangsu Agricultural Sciences,2021,49(9):156.