[1]Chandra N V,Megha Reddy K,Ashish Sushanth G,et al. A versatile approach based on convolutional neural networks for early identification of diseases in tomato plants[J]. International Journal of Wavelets,Multiresolution and Information Processing,2022,20(1):12-21.
[2]张宁,吴华瑞,韩笑,等. 基于多尺度和注意力机制的番茄病害识别方法[J]. 浙江农业学报,2021,33(7):1329-1338.
[3]赵小虎,李晓,叶圣,等. 基于改进U-Net网络的多尺度番茄病害分割算法[J]. 计算机工程与应用,2022,58(10):216-223.
[4]贾兆红,张袁源,王海涛,等. 基于Res2Net和双线性注意力的番茄病害时期识别方法[J]. 农业机械学报,2022,53(7):259-266.
[5]张洪骏. 基于CNN的番茄叶片病害图像识别方法研究[D]. 哈尔滨:哈尔滨工业大学,2021.
[6]胡玲艳,周婷,许巍,等. 面向番茄病害识别的改进型SqueezeNet轻量级模型[J]. 郑州大学学报(理学版),2022,54(4):71-77.
[7]方晨晨,石繁槐. 基于改进深度残差网络的番茄病害图像识别[J]. 计算机应用,2020,40(增刊1):203-208.
[8]王忠培,张萌,董伟,等. 基于迁移学习的多模型水稻病害识别方法研究[J]. 安徽农业科学,2021,49(20):236-242.
[9]董萍,卫梦华,时雷,等. 迁移学习在玉米叶片病害识别中的研究与应用[J]. 中国农机化学报,2022,43(3):146-152.
[10]徐杰. 基于ResNet的茶叶病害识别系统设计与实现[J]. 电子技术与软件工程,2022(12):167-170.
[11]周维,牛永真,王亚炜,等. 基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J]. 江苏农业学报,2022,38(3):685-695.
[12]孙俊,朱伟栋,罗元秋,等. 基于改进MobileNet-V2的田间农作物叶片病害识别[J]. 农业工程学报,2021,37(22):161-169.
[13]孟琭,徐磊,郭嘉阳.一种基于改进的MobileNet V2网络语义分割算法[J]. 电子学报,2020,48(9):1769-1776.
[14]刘合兵,鲁笛,席磊. 基于MobileNet V2和迁移学习的玉米病害识别研究[J]. 河南农业大学学报,2022,56(6):1041-1051.
[15]Shahi T B,Sitaula C,Neupane A,et al. Fruit classification using attention-based MobileNet V2 for industrial applications[J]. PLoS One,2022,17(2):e0264586.
[16]林禹. 深度神经网络传递迁移学习遥感影像分类[D]. 阜新:辽宁工程技术大学,2021.
[17]马铮. 基于深度-迁移学习的玉米叶部病害识别方法研究[D]. 哈尔滨:东北农业大学,2021.
[18]周宏威,沈恒宇,袁新佩,等. 基于迁移学习的苹果树叶片病虫害识别方法研究[J]. 中国农机化学报,2021,42(11):151-158.
[1]刘嘉政.基于深度迁移学习模型的花卉种类识别[J].江苏农业科学,2019,47(20):231.
Liu Jiazheng.Flower species identification based on deep transfer learning model[J].Jiangsu Agricultural Sciences,2019,47(9):231.
[2]黎振,陆玲,熊方康.基于k-means分割和迁移学习的番茄病理识别[J].江苏农业科学,2021,49(12):156.
Li Zhen,et al.Tomato pathological recognition based on k-means segmentation and transfer learning[J].Jiangsu Agricultural Sciences,2021,49(9):156.
[3]徐振南,王建坤,胡益嘉,等.基于MobileNetV3的马铃薯病害识别[J].江苏农业科学,2022,50(10):176.
Xu Zhennan,et al.Potato disease recognition based on MobileNetV3[J].Jiangsu Agricultural Sciences,2022,50(9):176.
[4]温艳兰,陈友鹏,王克强,等.基于迁移学习和改进残差网络的复杂背景下害虫图像识别[J].江苏农业科学,2023,51(8):171.
Wen Yanlan,et al.Recognition of pest images under complex background based on transfer learning and improved residual network[J].Jiangsu Agricultural Sciences,2023,51(9):171.
[5]章广传,李彤,何云,等.基于迁移模型集成的马铃薯叶片病害识别方法[J].江苏农业科学,2023,51(15):216.
Zhang Guangchuan,et al.A method for identifying potato leaf diseases based on migration model integration[J].Jiangsu Agricultural Sciences,2023,51(9):216.
[6]李云红,张蕾涛,谢蓉蓉,等.基于AT-DenseNet网络的番茄叶片病害识别方法[J].江苏农业科学,2023,51(21):209.
Li Yunhong,et al.An identification method for tomato leaf disease based on AT-DenseNet network[J].Jiangsu Agricultural Sciences,2023,51(9):209.
[7]肖天赐,陈燕红,李永可,等.基于改进通道注意力机制的农作物病害识别模型研究[J].江苏农业科学,2023,51(24):168.
Xiao Tianci,et al.Study on crop disease identification model based on improved channel attention mechanism[J].Jiangsu Agricultural Sciences,2023,51(9):168.
[8]姜晟久,钟国韵.基于可分离扩张卷积和通道剪枝的番茄病害分类方法[J].江苏农业科学,2024,52(2):182.
Jiang Shengjiu,et al.Tomato disease classification method based on separable dilated convolution and channel pruning[J].Jiangsu Agricultural Sciences,2024,52(9):182.
[9]章广传,李彤,高泉,等.融合迁移学习和知识蒸馏的轻量级马铃薯叶片病害识别模型的构建方法[J].江苏农业科学,2024,52(4):197.
Zhang Guangchuan,et al.Construction of a lightweight potato leaf disease recognition model based on transfer learning and knowledge distillation[J].Jiangsu Agricultural Sciences,2024,52(9):197.
[10]姜月明,王健,董光辉,等.基于改进卷积神经网络的苹果叶片病害识别[J].江苏农业科学,2024,52(14):214.
Jiang Yueming,et al.Recognition of apple leaf disease based on improved convolutional neural network[J].Jiangsu Agricultural Sciences,2024,52(9):214.