[1]王鸣谦,薛莉,赵珺,等. 世界草莓生产及贸易现状[J]. 中国果树,2021(2):104-108.
[2]Thakur P S,Khanna P,Sheorey T,et al. Trends in vision-based machine learning techniques for plant disease identification:a systematic review[J]. Expert Systems With Applications,2022,208:118117.
[3]翟肇裕,曹益飞,徐焕良,等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报,2021,52(7):1-18.
[4]Ngugi L C,Abelwahab M,Abo-Zahhad M. Recent advances in image processing techniques for automated leaf pest and disease recognition-A review[J]. Information Processing in Agriculture,2021,8(1):27-51.
[5]Ma L,Guo X L,Zhao S K,et al. Algorithm of strawberry disease recognition based on deep convolutional neural network[J]. Complexity,2021,2021:1-10.
[6]Kim B,Han Y K,Park J H,et al. Improved vision-based detection of strawberry diseases using a deep neural network[J]. Frontiers in Plant Science,2021,11:559172.
[7]Zhuang F Z,Qi Z Y,Duan K Y,et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE,2021,109(1):43-76.
[8]丁永军,张晶晶,李民赞. 基于卷积胶囊网络的百合病害识别研究[J]. 农业机械学报,2020,51(12):246-251,331.
[9]张会敏,谢泽奇,张善文. 基于注意力胶囊网络的作物病害识别方法[J]. 江苏农业科学,2022,50(6):101-106.
[10]Kwabena Patrick M,Felix Adekoya A,Abra Mighty A,et al. Capsule networks-A survey[J]. Journal of King Saud University-Computer and Information Sciences,2022,34(1):1295-1310.
[11]李书琴,陈聪,朱彤,等. 基于轻量级残差网络的植物叶片病害识别[J]. 农业机械学报,2022,53(3):243-250.
[12]王美华,吴振鑫,周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报,2021,52(4):239-247.
[13]Niu Z Y,Zhong G Q,Yu H. A review on the attention mechanism of deep learning[J]. Neurocomputing,2021,452:48-62.
[14]Shi H,Cao G,Ge Z X,et al. Double-branch network with pyramidal convolution and iterative attention for hyperspectral image classification[J]. Remote Sensing,2021,13(7):1403.
[15]Yang X H,Yang Y,Yang J,et al. Image multi-label classification based on pyramid convolution and split-attention mechanism[C]//2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP).December 17-19,2021,Chengdu,China.IEEE,2022:534-538.
[16]Li C Y,Fan Y X,Cai X D. PyConvU-Net:a lightweight and multiscale network for biomedical image segmentation[J]. BMC Bioinformatics,2021,22(1):14.
[17]黄林生,罗耀武,杨小冬,等. 基于注意力机制和多尺度残差网络的农作物病害识别[J]. 农业机械学报,2021,52(10):264-271.
[18]Cao J M,Li Y Y,Sun M C,et al. DO-conv:depthwise over-parameterized convolutional layer[J]. IEEE Transactions on Image Processing,2022,31:3726-3736.
[19]Gao H M,Chen Z H,Li C M. Shallow network based on depthwise overparameterized convolution for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters,2022,19:1-5.
[20]Wang Y Y,Zhang W S,Zhang L M,et al. Depthwise over-parameterized Siamese network for visual tracking[C]//2021 International Conference on Information Technology and Biomedical Engineering (ICITBE). December 24-26,2021,Nanchang,China.IEEE,2022:58-62.
[21]Liu Y H,Shen J,Yang L,et al. ResDO-UNet:a deep residual network for accurate retinal vessel segmentation from fundus images[J]. Biomedical Signal Processing and Control,2023,79:104087.
[22]Afzaal U,Bhattarai B,Pandeya Y R,et al. An instance segmentation model for strawberry diseases based on mask R-CNN[J]. Sensors,2021,21(19):6565.
[23]Shorten C,Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data,2019,6(1):1-48.
[24]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).June 27-30,2016,Las Vegas,NV,USA.IEEE,2016:770-778.
[25]Chollet F. Xception:deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).July 21-26,2017,Honolulu,HI,USA.IEEE,2017:1800-1807.
[26]Wang Q L,Wu B G,Zhu P F,et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 13-19,2020.Seattle,WA,USA.IEEE,2020:11531-11539.
[27]Hu J,Shen L,Albanie S,et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[28]史加荣,王丹,尚凡华,等. 随机梯度下降算法研究进展[J]. 自动化学报,2021,47(9):2103-2119.
[29]Zhou B L,Khosla A,Lapedriza A,et al. Learning deep features for discriminative localization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).June 27-30,2016.Las Vegas,NV,USA.IEEE,2016:2921-2929.