[1]Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment,2007,5(7):381-387.
[2]Woolf D,Amonette J E,Street-Perrott F A,et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications,2010,1:56.
[3]Lehmann J,Gaunt J,Rondon M. Bio-char sequestration in terrestrial ecosystems — a review[J]. Mitigation and Adaptation Strategies for Global Change,2006,11(2):403-427.
[4]郭碧林,陈效民,景峰,等. 施用生物炭对红壤性水稻土重金属钝化与土壤肥力的影响[J]. 水土保持学报,2019,33(3):298-304.
[5]Tang J C,Zhu W Y,Kookana R,et al. Characteristics of biochar and its application in remediation of contaminated soil[J]. Journal of Bioscience and Bioengineering,2013,116(6):653-659.
[6]Partey S T,Saito K,Preziosi R F,et al. Biochar use in a legume-rice rotation system:effects on soil fertility and crop performance[J]. Archives of Agronomy and Soil Science,2016,62(2):199-215.
[7]Liu W,Zhu Z,Li Y N,et al. The research on the effect of different of straw instead of nitrogen fertilizer on soil fertilizer efficiency[J]. IOP Conference Series(Earth and Environmental Science),2020,601:28-30.
[8]Mia S,Dijkstra F A,Singh B. Long-term aging of biochar[M]//Advances in agronomy.Amsterdam:Elsevier,2017:1-51.
[9]胡昕怡,徐伟健,施珂珂,等. 土壤/沉积物中黑碳的老化模拟研究进展[J]. 环境工程技术学报,2020,10(5):860-870.
[10]Giorgi F,Im E S,Coppola E,et al. Higher hydroclimatic intensity with global warming[J]. Journal of Climate,2011,24(20):5309-5324.
[11]杨菲,谢小立. 稻田干湿交替过程生理生态效应研究综述[J]. 杂交水稻,2010,25(5):1-4,8.
[12]Denef K,Six J,Bossuyt H,et al. Influence of dry-wet cycles on the interrelationship between aggregate,particulate organic matter,and microbial community dynamics[J]. Soil Biology and Biochemistry,2001,33(12/13):1599-1611.
[13]张威,张旭东,何红波,等. 干湿交替条件下土壤氮素转化及其影响研究进展[J]. 生态学杂志,2010,29(4):783-789.
[14]刘艳,马茂华,吴胜军,等. 干湿交替下土壤团聚体稳定性研究进展与展望[J]. 土壤,2018,50(5):853-865.
[15]Yang F,Zhao L,Gao B,et al. The interfacial behavior between biochar and soil minerals and its effect on biochar stability[J]. Environmental Science & Technology,2016,50(5):2264-2271.
[16]Stewart C,Zheng J Y,Botte J,et al. Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils[J]. GCB Bioenergy,2013,5(2):153-164.
[17]Pietikinen J,Kiikkil O,Fritze H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos,2000,89(2):231-242.
[18]Kolb S E,Fermanich K J,Dornbush M E. Effect of charcoal quantity on microbial biomass and activity in temperate soils[J]. Soil Science Society of America Journal,2009,73(4):1173-1181.
[19]Chen Y,Chen R Y,Liu Z,et al. Nitrogen process in stormwater bioretention:the impact of alternate drying and rewetting on nitrogen migration and transformation[J]. Environmental Science and Pollution Research,2021,28(32):43803-43814.
[20]Pezzolla D,Cardenas L M,Mian I A,et al. Responses of carbon,nitrogen and phosphorus to two consecutive drying-rewetting cycles in soils[J]. Journal of Plant Nutrition and Soil Science,2019,182(2):217-228.
[21]张泽洲,王冬梅,李梦寻. 干湿交替程度对土壤速效养分的影响[J]. 水土保持学报,2021,35(2):265-270.
[22]Fan Q Y,Cui L Q,Quan G X,et al. Effects of wet oxidation process on biochar surface in acid and alkaline soil environments[J]. Materials,2018,11(12):2362.
[23]Beare M H,Gregorich E G,St-Georges P. Compaction effects on CO2 and N2O production during drying and rewetting of soil[J]. Soil Biology and Biochemistry,2009,41(3):611-621.
[24]Saetre P,Stark J M. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species[J]. Oecologia,2005,142(2):247-260.
[25]王欣,尹带霞,张凤,等. 生物炭对土壤肥力与环境质量的影响机制与风险解析[J]. 农业工程学报,2015,31(4):248-257.
[26]Spokas K A,Novak J M,Venterea R T. Biochars role as an alternative N-fertilizer:ammonia capture[J]. Plant and Soil,2012,350(1):35-42.
[27]汤家庆. 水分条件对生物炭钝化污染水稻土铅镉铜锌的影响[D]. 武汉:华中农业大学,2021.
[28]Spokas K A,Novak J M,Masiello C A,et al. Physical disintegration of biochar:an overlooked process[J]. Environmental Science & Technology Letters,2014,1(8):326-332.
[29]Tan L S,Ma Z H,Yang K Q,et al. Effect of three artificial aging techniques on physicochemical properties and Pb adsorption capacities of different biochars[J]. Science of the Total Environment,2020,699:134223.
[30]张小凯,何丽芝,毛霞丽,等. 老化过程对生物质炭吸附-解吸附邻苯二甲酸二乙酯的影响[J]. 环境科学学报,2015,35(12):4012-4020.
[31]Cao Y Q,Jing Y D,Hao H,et al. Changes in the physicochemical characteristics of peanut straw biochar after freeze-thaw and dry-wet aging treatments of the biomass[J].Bioresources,2019,14(2):4329-4343.
[32]鞠文亮,荆延德. 陈化处理对棉花秸秆生物炭理化性质的影响[J]. 环境科学学报,2017,37(10):3853-3861.
[33]丛铭. 生物炭及其老化对小白菜生长和土壤肥力的影响[D]. 武汉:华中农业大学,2021.
[34]Mukherjee A,Zimmerman A R,Hamdan R,et al. Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging[J]. Solid Earth,2014,5(2):693-704.
[35]Xu Z B,Xu X Y,Tsang D C W,et al. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils[J]. Environmental Pollution,2018,242:1362-1370.
[36]Yang K,Wang X L,Cheng H F,et al. Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet-dry and freeze-thaw cycling[J]. Environmental Pollution,2021,268(Pt A):115846.
[37]Wang L W,OConnor D,Rinklebe J,et al. Biochar aging:mechanisms,physicochemical changes,assessment,and implications for field applications[J]. Environmental Science & Technology,2020,54(23):14797-14814.
[38]Nguyen B T,Lehmann J. Black carbon decomposition under varying water regimes[J]. Organic Geochemistry,2009,40(8):846-853.
[39]Blango M M,Cooke R A C,Moiwo J P. Effect of soil and water management practices on crop productivity in tropical inland valley swamps[J]. Agricultural Water Management,2019,222:82-91.
[40]苗微. 生物炭陈化对土壤养分和水稻生长的影响[D]. 沈阳:沈阳农业大学,2014.
[41]Haynes R J,Mokolobate M S. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues:a critical review of the phenomenon and the mechanisms involved[J]. Nutrient Cycling in Agroecosystems,2001,59(1):47-63.
[42]Buss W,Shepherd J G,Heal K V,et al. Spatial and temporal microscale pH change at the soil-biochar interface[J]. Geoderma,2018,331:50-52.
[43]张雪. 老化作用对生物炭固定重金属的响应[D]. 淮南:安徽理工大学,2020.
[44]Lawrinenko M,Laird D A,Johnson R L,et al. Accelerated aging of biochars:impact on anion exchange capacity[J]. Carbon,2016,103:217-227.
[45]He L Z,Zhong H,Liu G X,et al. Remediation of heavy metal contaminated soils by biochar:mechanisms,potential risks and applications in China[J]. Environmental Pollution,2019,252:846-855.
[46]周婷. 老化作用对生物炭吸附土壤重金属能力的影响研究[D]. 杭州:杭州师范大学,2017.
[47]Pan X Y,Baquy M A,Guan P,et al. Effect of soil acidification on the growth and nitrogen use efficiency of maize in Ultisols[J]. Journal of Soils and Sediments,2020,20(3):1435-1445.
[48]Zhang H M,Yang X Y,He X H,et al. Effect of long-term potassium fertilization on crop yield and potassium efficiency and balance under wheat-maize rotation in China[J]. Pedosphere,2011,21(2):154-163.
[49]卜祥烯. 干湿交替驱动下生物炭管理方式对水稻生长发育及氮素利用的影响[D]. 沈阳:沈阳农业大学,2019.
[50]张作合,张忠学,李铁成,等. 水炭运筹下水稻根系对氮素吸收利用的15N示踪分析[J]. 农业机械学报,2021,52(6):295-304.
[51]Smith W N,Grant B B,Campbell C A,et al. Crop residue removal effects on soil carbon:measured and inter-model comparisons[J]. Agriculture,Ecosystems & Environment,2012,161:27-38.
[52]Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science,2004,304(5677):1623-1627.
[53]Zhang C,Zeng G M,Huang D L,et al. Biochar for environmental management:mitigating greenhouse gas emissions,contaminant treatment,and potential negative impacts[J]. Chemical Engineering Journal,2019,373:902-922.
[54]王哲,程俊丽,卞园,等. 老化作用对生物炭钝化白云鄂博矿区碱性土壤中Cd2+的影响[J]. 环境科学,2022,43(11):5205-5213.
[55]Singh K. Microbial and enzyme activities of saline and sodic soils[J]. Land Degradation & Development,2016,27(3):706-718.
[56]王鸿浩,谭梦怡,王紫君,等. 不同水分管理条件下添加生物炭对琼北地区水稻土N2O排放的影响[J]. 环境科学,2021,42(8):3943-3952.
[57]袁海静,邓桂森,周顺桂,等. 生物炭的老化及其对温室气体排放影响的研究进展[J]. 生态环境学报,2019,28(9):1907-1914.
[58]Wang L,Gao C C,Yang K,et al. Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions[J]. Science of the Total Environment,2021,782:146824.
[59]Feng Y Y,Feng Y F,Liu Q,et al. How does biochar aging affect NH3 volatilization and GHGs emissions from agricultural soils?[J]. Environmental Pollution,2022,294:118598.
[60]黄绍敏,宝德俊,皇甫湘荣,等. 长期施肥对潮土土壤磷素利用与积累的影响[J]. 中国农业科学,2006,39(1):102-108.
[61]Roberts T L,Johnston A E. Phosphorus use efficiency and management in agriculture[J]. Resources,Conservation and Recycling,2015,105:275-281.
[62]黄晓雅,李莲芳,朱昌雄,等. 干湿交替对铈锰改性生物炭固定红壤As的影响[J]. 环境科学,2021,42(12):5997-6005.
[63]朱文静,杨艳芳,陈星,等. 不同培养条件下生物炭对磷吸附解吸能力的影响[J]. 湖南农业科学,2017(4):46-50.
[64]Yang H I,Lou K Y,Rajapaksha A U,et al. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars[J]. Environmental Science and Pollution Research,2018,25(26):25638-25647.
[65]于小彦,杨艳芳,张平究,等. 不同水分条件下生物质炭添加对湿地土壤微生物群落结构的影响[J]. 生态与农村环境学报,2019,35(9):1163-1171.
[66]杨凯,王营营,丁爱中. 生物炭对铅矿区污染土壤修复效果的稳定性研究[J]. 农业环境科学学报,2021,40(12):2715-2722.
[67]汪艳如. 牦牛粪生物炭老化对纳帕海高原湿地农田土壤氮流失的影响研究[D]. 昆明:昆明理工大学,2017.
[68]张军,宋萌萌,高兴,等. 生物炭填充方式与老化对生物滞留氮磷淋失的影响[J]. 中国给水排水,2020,36(15):100-106.
[69]Zhang X K,Wang H L,He L Z,et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants[J]. Environmental Science and Pollution Research,2013,20(12):8472-8483.
[70]Beesley L,Moreno-Jiménez E,Gomez-Eyles J L,et al. A review of biochars potential role in the remediation,revegetation and restoration of contaminated soils[J]. Environmental Pollution,2011,159(12):3269-3282.
[71]Guo Y,Tang W,Wu J G,et al. Mechanism of Cu(Ⅱ) adsorption inhibition on biochar by its aging process[J]. Journal of Environmental Sciences,2014,26(10):2123-2130.
[72]Singh B,Singh B P,Cowie A L. Characterisation and evaluation of biochars for their application as a soil amendment[J]. Soil Research,2010,48(7):516.
[73]Qian L B,Chen M F,Chen B L. Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes[J]. Journal of Soils and Sediments,2015,15(5):1130-1138.
[74]卞园. 老化作用对生物炭吸附钝化矿区土壤中镉的影响[D]. 包头:内蒙古科技大学,2021.
[75]Xu M,Wu J,Luo L,et al. The factors affecting biochar application in restoring heavy metal-polluted soil and its potential applications[J]. Chemistry and Ecology,2018,34(2):177-197.
[76]Hao H,Jing Y D,Ju W L,et al. Different types of biochar:effect of aging on the Cu(Ⅱ) adsorption behavior[J]. Desalination and Water Treatment,2017,95:227-233.
[77]Chang R H,Sohi S P,Jing F Q,et al. A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching,acidification and oxidation[J]. Environmental Pollution,2019,254:113123.
[78]Xu X Y,Cao X D,Zhao L,et al. Interaction of organic and inorganic fractions of biochar with Pb(Ⅱ) ion:further elucidation of mechanisms for Pb(Ⅱ) removal by biochar[J]. RSC Advances,2014,4(85):44930-44937.
[79]Shen Z T,Hou D Y,Zhao B,et al. Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing[J]. Science of the Total Environment,2018,619/620:185-193.
[80]Yang X D,Wang L W,Guo J M,et al. Aging features of metal(loid)s in biochar-amended soil:effects of biochar type and aging method[J]. Science of the Total Environment,2022,815:152922.