[1]王大正,任博,刘珠明. 不同类型农情监测系统间数据共享方案研究[J]. 中国农机化学报,2019,40(12):154-159.
[2]杨睿,王应宽,王宝济. 基于WoS文献计量学和知识图谱的农业机器人进展与趋势[J]. 农业工程学报,2022,38(1):53-62.
[3]Mogili U R,Deepak B B V L. Review on application of drone systems in precision agriculture[J]. Procedia Computer Science,2018,133:502-509.
[4]Zhang C H,Kovacs J M. The application of small unmanned aerial systems for precision agriculture:a review[J]. Precision Agriculture,2012,13(6):693-712.
[5]刘成良,贡亮,苑进,等. 农业机器人关键技术研究现状与发展趋势[J]. 农业机械学报,2022,53(7):1-22,55.
[6]陈威,郭书普. 中国农业信息化技术发展现状及存在的问题[J]. 农业工程学报,2013,29(22):196-205.
[7]Thompson N M,Bir C,Widmar D A,et al. Farmer perceptions of precision agriculture technology benefits[J]. Journal of Agricultural and Applied Economics,2019,51(1):142-163.
[8]Bayati M,Fotouhi R. A mobile robotic platform for crop monitoring[J]. Advances in Robotics & Automation,2018,7(1):1-7.
[9]Duan Q L,Yang R G,Chen Y. Automatic identifying query interfaces of deep web based on PreClassification-SVM[J]. Sensor Letters,2013,11(6):1389-1395.
[10]Qu J W,Guo K Q,Zhang Z Y,et al. Coupling control strategy and experiments for motion mode switching of a novel electric chassis[J]. Applied Sciences,2020,10(2):701.
[11]Bascetta L,Baur M,Gruosso G. ROBI:a prototype mobile manipulator for agricultural applications[J]. Electronics,2017,6(2):39.
[12]Tarao S,Fujiwara Y,Tsuda N,et al. Prototyping using a mobile robot platform equipped with low-end in-wheel motors[J]. Journal of Robotics and Mechatronics,2020,32(6):1154-1163.
[13]Qiu Q,Fan Z Q,Meng Z J,et al. Extended Ackerman Steering Principle for the coordinated movement control of a four wheel drive agricultural mobile robot[J]. Computers and Electronics in Agriculture,2018,152:40-50.
[14]Jin X Z,Yu J Z,Qin J H,et al. Adaptive perturbation rejection control and driving voltage circuit designs of wheeled mobile robots[J]. Journal of the Franklin Institute,2021,358(2):1185-1213.
[15]Qin B,Yan H C,Zhang H,et al. Enhanced reduced-order extended state observer for motion control of differential driven mobile robot[J]. IEEE Transactions on Cybernetics,2021,22(11):1-12.
[16]Singh R,Bera T K. Fuzzy logic controller for obstacle avoidance of mobile robot[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2019,20(1):51-62.
[17]Wu H M,Zaman M Q. LiDAR based trajectory-tracking of an autonomous differential drive mobile robot using fuzzy sliding mode controller[J]. IEEE Access,2022,10:33713-33722.
[18]Liu X X,Wang W,Li X L,et al. MPC-based high-speed trajectory tracking for 4WIS robot[J]. ISA Transactions,2022,123:413-424.
[19]dos Santos F N,Sobreira H M P,Campos D F B,et al. Towards a reliable monitoring robot for mountain vineyards[C]. Vila Real:2015 IEEE International Conference on Autonomous Robot Systems and Competitions,2015:37-43.
[20]刘兆朋,张智刚,罗锡文,等. 雷沃ZP9500高地隙喷雾机的GNSS自动导航作业系统设计[J]. 农业工程学报,2018,34(1):15-21.
[21]Zhang C,Noguchi N,Yang L L. Leader-follower system using two robot tractors to improve work efficiency[J]. Computers and Electronics in Agriculture,2016,121:269-281.
[22]李建勇,刘雪梅,李雪霞,等. 基于ROS的开源移动机器人系统设计[J]. 机电工程,2017,34(2):205-208.
[23]Tsolakis N,Bechtsis D,Bochtis D. AgROS:a robot operating system based emulation tool for agricultural robotics[J]. Agronomy,2019,9(7):403.
[24]Gao Y C,Gong L,Huang Y X,et al. Rhino:an open-source embedded motherboard design enabling complex behavior of intelligent robots[C]//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),July 8-12,2019,Hong Kong,China:IEEE,2019:1568-1573.
[25]Rey B,Aleixos N,Cubero S,et al. Xf-rovim:a field robot to detect olive trees infected by Xylella fastidiosa using proximal sensing[J]. Remote Sensing,2019,11(3):221.
[26]杨心萌,刘逸玮,王蒙. 基于光伏效应的巡检机器人系统设计[J]. 机电信息,2016(18):123,125.
[27]王鹏新,田惠仁,张悦,等. 基于深度学习的作物长势监测和产量估测研究进展[J]. 农业机械学报,2022,53(2):1-14.
[28]Rizk H,Habib M K. Robotized early plant health monitoring system[C]//IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society,October 21-23,2018,Washington,DC,USA:IEEE,2018:3795-3800.
[29]Bietresato M,Vidoni R,Gasparetto A,et al. Design and first tests of a vision system on a tele-operated vehicle for monitoring the canopy vigour status in orchards[C]//Proceedings“,”First Conference on Proximal Sensing Supporting Precision Agriculture,September 6-10,2015.Turin,Italy.Netherlands:EAGE Publications BV,2015(1):1-5.
[30]Fernández-Novales J,Saiz-Rubio V,Barrio I,et al. Monitoring and mapping vineyard water status using non-invasive technologies by a ground robot[J]. Remote Sensing,2021,13(14):2830.
[31]Pei W,Lan Y B,Luo X W,et al. Integrated sensor system for monitoring rice growth conditions based on unmanned ground vehicle system[J]. International Journal of Agricultural and Biological Engineering,2014,7(2):75-81.
[32]Zhao B,Tian L F,Ahamed T. Real-time NDVI measurement using a low-cost panchromatic sensor for a mobile robot platform[J]. Environmental Control in Biology,2010,48(2):73-79.
[33]Lu H,Tang L,Whitham S A,et al. A robotic platform for corn seedling morphological traits characterization[J]. Sensors,2017,17(9):2082.
[34]Gu Y L,Li Z Q,Zhang Z,et al. Path tracking control of field information-collecting robot based on improved convolutional neural network algorithm[J]. Sensors,2020,20(3):797.
[35]Chebrolu N,Lottes P,Schaefer A,et al. Agricultural robot dataset for plant classification,localization and mapping on sugar beet fields[J]. International Journal of Robotics Research,2017,36(10):1045-1052.
[36]Chakraborty M,Khot L R,Sankaran S,et al. Evaluation of mobile 3D light detection and ranging based canopy mapping system for tree fruit crops[J]. Computers and Electronics in Agriculture,2019,158:284-293.
[37]Shafiekhani A,Kadam S,Fritschi F B,et al. Vinobot and vinoculer:two robotic platforms for high-throughput field phenotyping[J]. Sensors,2017,17(1):214.
[38]Fan Z Q,Sun N,Qiu Q,et al. In situ measuring stem diameters of maize crops with a high-throughput phenotyping robot[J]. Remote Sensing,2022,14(4):1030.
[39]Kim W S,Lee D H,Kim Y J,et al. Stereo-vision-based crop height estimation for agricultural robots[J]. Computers and Electronics in Agriculture,2021,181:105937.
[40]Mueller-Sim T,Jenkins M,Abel J,et al. The Robotanist:a ground-based agricultural robot for high-throughput crop phenotyping[C]//2017 IEEE International Conference on Robotics and Automation (ICRA).New York:ACM,2017:3634-3639.
[41]Roure F,Moreno G,Soler M,et al. GRAPE:ground robot for vineyArd monitoring and ProtEction[M]//ROBOT 2017:Third Iberian Robotics Conference.Cham:Springer International Publishing,2017:249-260.
[42]Xaud M F S,Leite A C,Barbosa E S,et al. Robotic tankette for intelligent bioenergy agriculture:design,development and field tests[C]//Procedings Ⅹ[KG-*3]Ⅻ Congresso Brasileiro de Automtica,September 9-12,2018. Joo Pessoa,Paraíba,Brasil. Joao Pessoa,Paraíba,Brasil:SBA Sociedade Brasileira de Automática,2018:1901.00761.
[43]Vidoni R,Gallo R,Ristorto G,et al. ByeLab:an agricultural mobile robot prototype for proximal sensing and precision farming[C]//Proceedings of ASME 2017 International Mechanical Engineering Congress and Exposition,November 3-9,2017,Tampa,Florida,USA.2018
[44]Ahmadi A,Nardi L,Chebrolu N,et al. Visual servoing-based navigation for monitoring row-crop fields[C]//2020 IEEE International Conference on Robotics and Automation (ICRA),May 31-August 31,2020,Paris,France.IEEE,2020:4920-4926.
[45]Kayacan E,Young S N,Peschel J M,et al. High-precision control of tracked field robots in the presence of unknown traction coefficients[J]. Journal of Field Robotics,2018,35(7):1050-1062.
[46]袁洪波,赵努东,程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报,2020,51(增刊2):323-334.
[47]Alam M S,Alam M,Tufail M,et al. TobSet:a new tobacco crop and weeds image dataset and its utilization for vision-based spraying by agricultural robots[J]. Applied Sciences,2022,12(3):1308.
[48]Bak T,Jakobsen H. Agricultural robotic platform with four wheel steering for weed detection[J]. Biosystems Engineering,2004,87(2):125-136.
[49]Arakeri M P,Vijaya Kumar B P,Barsaiya S,et al. Computer vision based robotic weed control system for precision agriculture[C]//2017 International Conference on Advances in Computing,Communications and Informatics (ICACCI),September 13-16,2017. Udupi,India:IEEE,2017:1201-1205.
[50]Haug S,Michaels A,Biber P,et al. Plant classification system for crop/weed discrimination without segmentation[C]//IEEE Winter Conference on Applications of Computer Vision,March 24-26,2014. Steamboat Springs,CO,USA:IEEE,2014:1142-1149.
[51]Ruckelshausen A,Biber P,Dorna M,et al. BoniRob:an autonomous field robot platform for individual plant phenotyping[J]. Precision Agriculture,2009,9(841):841-847.
[52]Sujaritha M,Annadurai S,Satheeshkumar J,et al. Weed detecting robot in sugarcane fields using fuzzy real time classifier[J]. Computers and Electronics in Agriculture,2017,134:160-171.
[53]Fawakherji M,Potena C,Pretto A,et al. Multi-spectral image synthesis for crop/weed segmentation in precision farming[J]. Robotics and Autonomous Systems,2021,146:103861.
[54]Ji Y,Kumar R,Singh D,et al. Performance analysis of target information recognition system for agricultural robots[J]. International Journal of Agricultural and Environmental Information Systems,2021,12(2):49-60.
[55]刘成良,林洪振,李彦明,等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报,2020,51(1):1-18.
[56]Pilli S K,Nallathambi B,George S J,et al. eAGROBOT-A robot for early crop disease detection using image processing[C]//2014 International Conference on Electronics and Communication Systems (ICECS),February 13-14,2014. Coimbatore,India:IEEE,2015:1-6.
[57]Shen B L,Chang J,Wu C H,et al. Local zoom system for agricultural pest detection and recognition[J]. Applied Physics B,2018,124(11):219.
[58]Cubero S,Marco-Noales E,Aleixos N,et al. RobHortic:a field robot to detect pests and diseases in horticultural crops by proximal sensing[J]. Agriculture,2020,10(7):276.
[59]岳学军,蔡雨霖,王林惠,等. 农情信息智能感知及解析的研究进展[J]. 华南农业大学学报,2020,41(6):14-28.
[60]Iida M,Kang D,Taniwaki M,et al. Localization of CO2 source by a hexapod robot equipped with an anemoscope and a gas sensor[J]. Computers and Electronics in Agriculture,2008,63(1):73-80.
[61]赵静,闫春雨,曹佃龙,等. 基于VR的农田环境监测机器人研制[J]. 农机化研究,2020,42(12):74-79.
[62]Efimov A E,Sitdikova Y R,Dobrokhotov A V,et al. Monitoring evapotranspiration in an agricultural field and determination of irrigation rates and dates by automated mobile field agrometeorological complex[J]. Water Resources,2018,45(1):133-137.
[63]张雪芬,薛红喜,孙涵,等. 自动农业气象观测系统功能与设计[J]. 应用气象学报,2012,23(1):105-112.
[64]高平安. 一种低功耗农田气象数据监测器设计[J]. 国外电子测量技术,2021,40(5):150-153.
[65]赵小强,陈玉兵,高强,等. 基于Modbus协议的农田气象信息监测站设计[J]. 电子技术应用,2018,44(12):55-59,64.
[66]Fentanes J P,Gould I,Duckett T,et al. 3-D soil compaction mapping through kriging-based exploration with a mobile robot[J]. IEEE Robotics and Automation Letters,2018,3(4):3066-3072.
[67]Scholz C,Moeller K,Ruckelshausen A,et al. Automatic soil penetrometer measurements and GIS based documentation with the autonomous field robot platform bonirob[C]. California:12th International Conference of Precision Agriculture,2014.
[68]Meng C,Yang W,Lan H,et al. Development and application of a vehicle-mounted soil texture detector[J]. Sensors,2020,20(24):7175.
[69]Piper P M,Vogel J S,Fahrenkrug M T,et al. Designing an autonomous soil monitoring robot[C]//2015 Systems and Information Engineering Design Symposium,April 24-24,2015. Charlottesville,VA,USA:IEEE,2015:137-141.
[70]nal I·,Topakci M,anakci M,et al. Development of a mobile robot-based combined sensor platform to determine the corre-lation between soil penetration resistance and electrical conductivity[J]. Turkish Journal of Agriculture and Forestry,2021,45(3):365-379.
[71]Yan X T,Bianco A,Niu C,et al. The AgriRover:a reinvented mechatronic platform from space robotics for precision farming[M]//Reinventing mechatronics. Cham:Springer International Publishing,2020:55-73.
[72]Pobkrut T,Kerdcharoen T. Soil sensing survey robots based on electronic nose[C]. South Korea:International Conference on Control,Automation and Systems,2014,12:1604-1609.
[73]Kitic' G,Krklje D,Panic' M,et al. Agrobot Lala-an autonomous robotic system for real-time,in-field soil sampling,and analysis of nitrates[J]. Sensors,2022,22(11):4207.
[74]Adebiyi M O,Ogundokun R O,Abokhai A A. Machine learning-based predictive farmland optimization and crop monitoring system[J]. Scientifica,2020,7:1-12.
[75]Wang W C,Yang W,Zhou P,et al. Development and performance test of a vehicle-mounted total nitrogen content prediction system based on the fusion of near-infrared spectroscopy and image information[J]. Computers and Electronics in Agriculture,2022,192:106613.
[76]Goel N,Sehgal P. Fuzzy classification of pre-harvest tomatoes for ripeness estimation-an approach based on automatic rule learning using decision tree[J]. Applied Soft Computing,2015,36:45-56.
[77]Sa I,Ge Z Y,Dayoub F,et al. DeepFruits:a fruit detection system using deep neural networks[J]. Sensors,2016,16(8):1222.
[78]Yu Y,Zhang K L,Yang L,et al. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN[J]. Computers and Electronics in Agriculture,2019,163:104846.
[79]Rahnemoonfar M,Sheppard C. Deep count:fruit counting based on deep simulated learning[J]. Sensors,2017,17(4):905.
[80]Stein M,Bargoti S,Underwood J. Image based mango fruit detection,localisation and yield estimation using multiple view geometry[J]. Sensors,2016,16(11):1915.
[81]Feng X,Yan F,Liu X Y. Study of wireless communication technologies on Internet of Things for precision agriculture[J]. Wireless Personal Communications,2019,108(3):1785-1802.
[82]李兰兰,冯江华. 5G网络技术在农业智能化管理中的应用[J]. 农机化研究,2022,44(9):260-263.
[83]贾敬敦,鲁相洁,黄峰,等. 远程控制与无线通信技术在农业中的应用分析与展望[J]. 农业机械学报,2021,52(增刊1):351-359.
[84]刘昊,李静,鲁旭涛. 5G背景下智慧农业通信节点部署策略[J]. 西安交通大学学报,2020,54(10):45-53.
[85]王敏. 基于5G网络技术的智能收割通信系统优化[J]. 农机化研究,2023,45(3):232-236.
[86]邱彩虹,苏文青,陈家明,等. 基于WiFi的室内智能蔬菜无土栽培结构设计[J]. 中国农学通报,2019,35(4):125-129.
[87]刁智华,闫娇楠,张萌,等. 基于WiFi通信的玉米除草机器人结构设计与试验[J]. 中国农机化学报,2022,43(4):131-137.
[88]贾科进,王文贞,杜太行,等. 基于ZigBee无线传感器网络的土壤墒情监测系统[J]. 节水灌溉,2014(3):69-71,74.
[89]杨亦洲,周杰,杜景林. 基于ModBus协议和ZigBee网络的气象无线传感网设计[J]. 电子技术应用,2014,40(10):16-19.
[90]Ye Y F,Sun X H,Liu M H,et al. The remote farmland environment monitoring system based on ZigBee sensor network[J]. International Journal of Computational Science and Engineering,2018,17(1):25.
[91]漆海霞,董义洁,林圳鑫,等. 基于LoRa的花生土壤水分监测系统设计与试验[J]. 农机化研究,2021,43(8):69-74.
[92]Wu Q L,Zhao C Q,Liang Y,et al. Design of farmland information acquisition system based on LoRa wireless sensor network[C]//International Conference on Computer and Computing Technologies in Agriculture.Cham:Springer,2019:529-539.
[93]聂鹏程,张慧,耿洪良,等. 农业物联网技术现状与发展趋势[J]. 浙江大学学报(农业与生命科学版),2021,47(2):135-146.
[94]Zheng L H,Li M Z,Wu C C,et al. Development of a smart mobile farming service system[J]. Mathematical and Computer Modelling,2011,54(3/4):1194-1203.
[95]Huang Y,Li C C. Real-time monitoring system for paddy environmental information based on DC powerline communication technology[J]. Computers and Electronics in Agriculture,2017,134:51-62.
[96]张李元,左少华,江锦春. 基于NB-IoT技术的小型自动气象站监测系统设计[J]. 气象科技,2020,48(6):816-822.
[97]Hu Z L,Gao Y,Li M,et al. An agricultural habitat information acquisition and remote intelligent decision system based on the Internet of Things[C]//International Conference on Computer and Computing Technologies in Agriculture.Cham:Springer,2019:75-85.
[98]李瑾,郭美荣,高亮亮. 农业物联网技术应用及创新发展策略[J]. 农业工程学报,2015,31(增刊2):200-209.
[99]Lokers R,Knapen R,Janssen S,et al. Analysis of Big Data technologies for use in agro-environmental science[J]. Environmental Modelling & Software,2016,84:494-504.
[100]Lagos-Ortiz K,del Pilar Salas-Zárate M,Paredes-Valverde M A,et al. AgriEnt:a knowledge-based web platform for managing insect pests of field crops[J]. Applied Sciences,2020,10(3):1040.
[101]侯亮,王新栋,高倩,等. 基于Hadoop的农业大数据挖掘系统构建[J]. 农业图书情报学刊,2018,30(7):19-21.
[102]柴进. 基于Hadoop的农业数据挖掘系统的研究与实现[D]. 北京:北京工业大学,2015:45-46.
[103]郭二秀. 基于Spark的农业大数据挖掘系统的设计与实现[D]. 杭州:浙江大学,2018:55-56.
[104]Fu S W,Chen G F,Zhao S,et al. Research and application of spark platform on big data processing in intelligent agriculture of Jilin Province[M]//Computer and computing technologies in agriculture Ⅺ. Cham:Springer International Publishing,2019:1-12.
[105]彭秀媛,王枫. 农业大数据应用研究[J]. 园艺与种苗,2020,40(11):56-57.
[106]刘彪.“云计算”和大数据在“互联网+”时代的应用[J]. 电子技术与软件工程,2020(12):201-203.
[107]Zhang X H,Cao Z Y,Dong W B. Overview of edge computing in the agricultural Internet of Things:key technologies,applications,challenges[J]. IEEE Access,2020,8:141748-141761.
[108]Zhou L J,Chen N C,Chen Z Q. A cloud computing-enabled spatio-temporal cyber-physical information infrastructure for efficient soil moisture monitoring[J]. ISPRS International Journal of Geo-Information,2016,5(6):81.
[109]崔晓军,高子航. 基于GIS与云计算的温州市农业大数据可视化平台研究[J]. 电脑编程技巧与维护,2020(4):113-115.
[110]Zha X.Design of rice regional test information collection system based on cloud computing[J]. INMATEH Agricultural Engineering,2021,64(2):497-506.
[111]Hsu T C,Yang H,Chung Y C,et al. A creative IoT agriculture platform for cloud fog computing[J]. Sustainable Computing:Informatics and Systems,2020,28:100285.
[112]蔡自兴. 中国人工智能40年[J]. 科技导报,2016,34(15):12-32.
[113]张彬露. 农业专家系统概述与优化研究[J]. 农村经济与科技,2020,31(15):341-342,354.
[114]兰玉彬,王天伟,陈盛德,等. 农业人工智能技术:现代农业科技的翅膀[J]. 华南农业大学学报,2020,41(6):1-13.
[115]Li D K. Application of artificial intelligence and machine learning based on big data analysis in sustainable agriculture[J]. Acta Agriculturae Scandinavica,Section B-Soil & Plant Science,2021,71(9):956-969.
[1]陈浩,张秀英,郝兴顺,等.秸秆还田对农田环境多重影响研究进展[J].江苏农业科学,2018,46(05):21.
Chen Hao,et al.Research progress of multiple effects of straw returning on farmland environment[J].Jiangsu Agricultural Sciences,2018,46(12):21.
[2]卜小东,郭辉,黄可京.热红外遥感在农田环境水分监测中的应用进展[J].江苏农业科学,2020,48(20):25.
Bu Xiaodong,et al.Performance and application of thermal infrared remote sensing in farmland environmental water monitoring[J].Jiangsu Agricultural Sciences,2020,48(12):25.
[3]刘顺,闫荣兰,台浩娇,等.基于局部势场A*算法和动态窗口法的农用轮式机器人路径规划[J].江苏农业科学,2022,50(2):192.
Liu Shun,et al.Path planning of agricultural wheeled robot based on local potential field A* algorithm and dynamic window method[J].Jiangsu Agricultural Sciences,2022,50(12):192.