[1]Gao J B,Dai S H,Huang J J,et al. Kiwifruit detection method in orchard via an improved light-weight YOLO v4[J]. Agronomy,2022,12(9):2081.
[2]Hussin R,Juhari M R,Kang N W,et al. Digital image processing techniques for object detection from complex background image[J]. Procedia Engineering,2012,41:340-344.
[3]Payne A B,Walsh K B,Subedi P P,et al. Estimation of mango crop yield using image analysis-Segmentation method[J]. Computers and Electronics in Agriculture,2013,91:57-64.
[4]孙建桐,孙意凡,赵然,等. 基于几何形态学与迭代随机圆的番茄识别方法[J]. 农业机械学报,2019,50(增刊1):22-26,61.
[5]Parvathi S,Tamil S S.Detection of maturity stages of coconuts in complex background using Faster R-CNN model[J]. Biosystems Engineering,2021,202:119-132.
[6]Tian Y N,Yang G D,Wang Z,et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture,2019,157:417-426.
[7]Chen W K,Lu S L,Liu B H,et al. CitrusYOLO:a algorithm for Citrus detection under orchard environment based on YOLO v4[J]. Multimedia Tools and Applications,2022,81(22):31363-31389.
[8]Wang C Y,Liao H Y M,Wu Y H,et al. CSPNet:a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle,2020:1571-1580.
[9]李刚,齐铭伟,张飞扬,等. 基于RepVGG-YOLOv4的焦罐提升机状态检测[J]. 工业控制计算机,2022,35(6):43-45.
[10]高梦圆,马双宝,董玉婕,等. 基于实例分割苹果采摘机器人视觉定位与检测[J]. 江苏农业科学,2022,50(3):201-208.
[11]Li H L,Li J,Wei H B,et al. Slim-neck by GSConv:a better design paradigm of detector architectures for autonomous vehicles[DB/OL]. ArXiv(Computer Science).(2022-06-06)[2022-12-29]. https://arxiv.org/vc/arxiv/papers/2206/2206.02424v1.pdf.
[12]张欣怡,张飞,郝斌,等. 基于改进YOLO v5的口罩佩戴检测算法[J/OL]. 计算机工程.(2022-12-08)[2022-12-29]. https://kns.cnki.net/kcms/detail//31.1289.tp.20221207.1007.002.html.
[13]王卓,王健,王枭雄,等. 基于改进YOLO v4的自然环境苹果轻量级检测方法[J]. 农业机械学报,2022,53(8):294-302.
[14]Wang Q L,Wu B G,Zhu P F,et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,2020:11531-11539.
[15]Hu J,Shen L,Sun G.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake,2018:7132-7141.
[16]Zhang Y F,Ren W Q,Zhang Z,et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing,2022,506:146-157.
[1]杜鹏程,蒋笃忠,向阳,等.基于YOLO v5s目标检测算法的烤烟鲜叶成熟度识别方法[J].江苏农业科学,2023,51(19):158.
Du Pengcheng,et al.Identification method for fresh leaf maturity of flue-cured tobacco based on YOLO v5s target detection algorithm[J].Jiangsu Agricultural Sciences,2023,51(19):158.
[2]李滨,樊健.基于YOLO v5的水稻害虫分类[J].江苏农业科学,2024,52(2):175.
Li Bin,et al.Classification of rice pests based on YOLO v5[J].Jiangsu Agricultural Sciences,2024,52(19):175.
[3]蔡易南,肖小玲.基于改进YOLO v5n的葡萄叶病虫害检测模型轻量化方法[J].江苏农业科学,2024,52(7):198.
Cai Yinan,et al.Lightweight method of grape leaf diseases and insect pests detection model based on improved YOLO v5n[J].Jiangsu Agricultural Sciences,2024,52(19):198.
[4]温彬彬,张华,孟祥龙.基于改进YOLO v5的轻量化苹果检测方法[J].江苏农业科学,2024,52(12):217.
Wen Binbin,et al.A lightweight apple detection method based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2024,52(19):217.
[5]吴坚,秦玉广.基于改进YOLO v5的农田苗草检测方法[J].江苏农业科学,2024,52(13):197.
Wu Jian,et al.Detection of seedlings and weeds in farmland based on an improved YOLO v5 algorithm[J].Jiangsu Agricultural Sciences,2024,52(19):197.
[6]李炳鑫,宋涛,高婕,等.基于YOLO v5模型的缺钙草莓叶片识别方法[J].江苏农业科学,2024,52(20):74.
Li Bingxin,et al.Identification method of calcium-deficient strawberry leaves based on YOLO v5 model[J].Jiangsu Agricultural Sciences,2024,52(19):74.
[7]王博,胡蓉华.基于轻量化神经网络的桃树叶片病害检测方法[J].江苏农业科学,2025,53(5):138.
Wang Bo,et al.A peach leaf disease detection method based on lightweight neural network[J].Jiangsu Agricultural Sciences,2025,53(19):138.