|本期目录/Table of Contents|

[1]王梦娜,刘康伟,王冷静,等.基因组稳定性影响水稻生长发育的机制综述[J].江苏农业科学,2023,51(23):1-9.
 Wang Mengna,et al.Mechanism of genome stability affecting rice growth and development: a review[J].Jiangsu Agricultural Sciences,2023,51(23):1-9.
点击复制

基因组稳定性影响水稻生长发育的机制综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第23期
页码:
1-9
栏目:
专论与综述
出版日期:
2023-12-05

文章信息/Info

Title:
Mechanism of genome stability affecting rice growth and development: a review
作者:
王梦娜刘康伟王冷静代强冯海洋张超于恒秀
江苏省作物遗传生理重点实验室/植物功能基因组学教育部重点实验室/江苏省作物基因组学和分子育种重点实验室/江苏省粮食作物现代产业技术协同创新中心/扬州大学农学院,江苏扬州 225009
Author(s):
Wang Mengnaet al
关键词:
水稻基因组稳定性DNA损伤DSB修复
Keywords:
-
分类号:
S336
DOI:
-
文献标志码:
A
摘要:
基因组包含生物体的全部遗传信息(部分病毒是RNA),维持染色体的结构、数目及遗传信息的相对稳定,是物种得以生存和延续的前提与保障。水稻作为重要的粮食作物之一,其基因组稳定是保障粮食生产和发展现代农业的重要前提。DNA损伤是一种危害性很高的损伤形式,及时、正确的修复是维持基因组稳定的基础。DNA损伤首先会激活DNA损伤反应(DDR),DDR一方面阻止受损细胞携带错误信息继续分裂,另一方面积极促进各种修复途径,如非同源末端连接(NHEJ)、同源重组(HR)和核苷酸切除修复(NER)等,这些修复途径相互协调,相互竞争。本文简述影响基因组稳定性的多种因素,重点是DNA损伤和修复的分子机制,以及在水稻生长发育过程中各关键基因对于维持基因组稳定的重要性,并探讨水稻基因组稳定性研究的未来方向。
Abstract:
-

参考文献/References:

[1]Tong A H Y,Evangelista M,Parsons A B,et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants[J]. Science,2001,294(5550):2364-2368.
[2]Puddu F,Herzog M,Selivanova A,et al. Genome architecture and stability in the Saccharomyces cerevisiae knockout collection[J]. Nature,2019,573(7774):416-420.
[3]Kennedy J A,Syed S,Schmidt K H. Structural motifs critical for in vivo function and stability of the RecQ-mediated genome instability protein Rmi1[J]. PLoS One,2015,10(12):e0145466.
[4]Jackson S P,Bartek J.The DNA-damage response in human biology and disease[J]. Nature,2009,461(7267):1071-1078.
[5]Lambert S,Carr A M.Replication stress and genome rearrangements:lessons from yeast models[J]. Current Opinion in Genetics & Development,2013,23(2):132-139.
[6]Alexandrov L B,Nik-Zainal S,Wedge D C,et al. Deciphering signatures of mutational processes operative in human cancer[J]. Cell Reports,2013,3(1):246-259.
[7]Jiang J M,Mao N,Hu H A,et al. A SWI/SNF subunit regulates chromosomal dissociation of structural maintenance complex 5 during DNA repair in plant cells[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(30):15288-15296.
[8]Motofei I G. Biology of cancer;from cellular and molecular mechanisms to developmental processes and adaptation[J]. Seminars in Cancer Biology,2022,86(Pt3):600-615.
[9]Alexander J L,Orr-Weaver T L.Replication fork instability and the consequences of fork collisions from rereplication[J]. Genes & Development,2016,30(20):2241-2252.
[10]Brown R E,Freudenreich C H.Structure-forming repeats and their impact on genome stability[J]. Current Opinion in Genetics & Development,2021,67:41-51.
[11]Hamperl S,Cimprich K A.The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability[J]. DNA Repair,2014,19:84-94.
[12]Yang Z,Li M M,Sun Q W.RHON1 co-transcriptionally resolves R-loops for Arabidopsis chloroplast genome maintenance[J]. Cell Reports,2020,30(1):243-256.
[13]Srinivas U S,Tan B W Q,Vellayappan B A,et al. ROS and the DNA damage response in cancer[J]. Redox Biology,2019,25:101084.
[14]Chatterjee N,Walker G C.Mechanisms of DNA damage,repair,and mutagenesis[J]. Environmental and Molecular Mutagenesis,2017,58(5):235-263.
[15]Chirinos-Arias M C,Spampinato C P.Role of the mismatch repair protein MSH7 in Arabidopsis adaptation to acute salt stress[J]. Plant Physiology and Biochemistry,2021,169:280-290.
[16]Hartman P E,Hartman Z. Direct interception of mutagens and carcinogens by biomolecules[M]//Antimutagenesis and anticarcinogenesis mechanisms Ⅲ. Boston,MA:Springer US,1993:351-366.
[17]Beranek D T. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents[J]. Fundamental and Molecular Mechanisms of Mutagenesis,1990,231(1):11-30.
[18]Angon P B,Tahjib-Ul-Arif M,Samin S I,et al. How do plants respond to combined drought and salinity stress?—a systematic review[J]. Plants,2022,11(21):2884.
[19]Hasanuzzaman M,Nahar K,Alam M,et al. Physiological,biochemical,and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences,2013,14(5):9643-9684.
[20]Morgan C,Zhang H K,Bomblies K.Are the effects of elevated temperature on meiotic recombination and thermotolerance linked via the axis and synaptonemal complex?[J]. Philos Trans R Soc Lond B Biol Sci,2017,372(1736):20160470.
[21]Ning Y J,Liu Q P,Wang C,et al. Heat stress interferes with formation of double-strand breaks and homolog synapsis[J]. Plant Physiology,2021,185(4):1783-1797.
[22]Zhao K,Sun X X,Zheng C H,et al. Enhancement of xrcc1-mediated base excision repair improves the genetic stability and pluripotency of iPSCs[J]. Science Bulletin,2022,67(11):1126-1130.
[23]Maddukuri L,Dudzińska D,Tudek B.Bacterial DNA repair genes and their eukaryotic homologues:4.The role of nucleotide excision DNA repair (NER) system in mammalian cells[J]. Acta Biochimica Polonica,2007,54(3):469-482.
[24]Fousteri M,Mullenders L H.Transcription-coupled nucleotide excision repair in mammalian cells:molecular mechanisms and biological effects[J]. Cell Research,2008,18(1):73-84.
[25]Jeppesen D K,Bohr V A,Stevnsner T.DNA repair deficiency in neurodegeneration[J]. Progress in Neurobiology,2011,94(2):166-200.
[26]Kunz B A,Anderson H J,Osmond M J,et al. Components of nucleotide excision repair and DNA damage tolerance in Arabidopsis thaliana[J]. Environmental and Molecular Mutagenesis,2005,45(2/3):115-127.
[27]David C. Replication-coupled DNA repair[J]. Molecular Cell,2019,74(5):866-876.
[28]Hays J B. Arabidopsis thaliana,a versatile model system for study of eukaryotic genome-maintenance functions[J]. DNA Repair,2002,1(8):579-600.
[29]Roldán-Arjona T,Ariza R R. Repair and tolerance of oxidative DNA damage in plants[J]. Reviews in Mutation Research,2009,681(2/3):169-179.
[30]Garcia-Diaz M,Bebenek K. Multiple functions of DNA polymerases[J]. Critical Reviews in Plant Sciences,2007,26(2):105-122.
[31]Jiang M,Wu X J,Song Y,et al. Effects of OsMSH6 mutations on microsatellite stability and homeologous recombination in rice[J]. Front Plant Sci,2020,11:220.
[32]Spampinato C P,Gomez R L,Galles C,et al. From bacteria to plants:a compendium of mismatch repair assays[J]. Reviews in Mutation Research,2009,682(2/3):110-128.
[33]Singh S K,Roy S,Choudhury S R,et al. DNA repair and recombination in higher plants:insights from comparative genomics of Arabidopsis and rice[J]. BMC Genomics,2010,11:443.
[34]Gómez R,Spampinato C P.Mismatch recognition function of Arabidopsis thaliana MutSγ[J]. DNA Repair,2013,12(4):257-264.
[35]Ceccaldi R,Rondinelli B,DAndrea A D.Repair pathway choices and consequences at the double-strand break[J]. Trends in Cell Biology,2016,26(1):52-64.
[36]Karanam K,Kafri R,Loewer A,et al. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase[J]. Molecular Cell,2012,47(2):320-329.
[37]Spampinato C P. Protecting DNA from errors and damage:an overview of DNA repair mechanisms in plants compared to mammals[J]. Cellular and Molecular Life Sciences,2017,74(9):1693-1709.
[38]House N C,Polleys E J,Quasem I,et al. Distinct roles for S.cerevisiae H2A copies in recombination and repeat stability,with a role for H2A.1 threonine 126[D]. United States:Tufts University,University of Alaska Anchorage,2019,8.
[39]Yong-Ik K,Kiyomi A,Masaki E,et al. DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants[J]. BMC Plant Biology,2013,13(1):62.
[40]Buckland R J,Watt D L,Chittoor B,et al. Increased and imbalanced dNTP pools symmetrically promote both leading and lagging strand replication infidelity[J]. PLoS Genetics,2014,10(12):e1004846.
[41]Niu M,Wang Y H,Wang C M,et al. ALR encoding dCMP deaminase is critical for DNA damage repair,cell cycle progression and plant development in rice[J]. Journal of Experimental Botany,2017,68(21/22):5773-5786.
[42]Chang Y X,Gong L,Yuan W Y,et al. Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice[J]. Plant Physiology,2009,151(4):2162-2173.
[43]Ishibashi T,Kimura S,Furukawa T,et al. Two types of replication protein A 70 kDa subunit in rice,Oryza sativa:molecular cloning,characterization,and cellular & tissue distribution[J]. Gene,2001,272(1/2):335-343.
[44]Waterworth W M,Latham R,Wang D P,et al. Seed DNA damage responses promote germination and growth in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(30):e2202172119.
[45]Nishizawa-Yokoi A,Motoyama R,Tanaka T,et al. SUPPRESSOR OF GAMMA RESPONSE 1 plays rice-specific roles in DNA damage response and repair[J]. Plant Physiology,2023,191(2):1288-1304.
[46]Mahapatra K,Roy S. SOG1 transcription factor promotes the onset of endoreduplication under salinity stress in Arabidopsis[J]. Scientific Reports,2021,11(1):11659.
[47]Zhang Q F.Strategies for developing green super rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(42):16402-16409.
[48]Izawa T,Konishi S,Shomura A,et al. DNA changes tell us about rice domestication[J]. Current Opinion in Plant Biology,2009,12(2):185-192.
[49]Peng Y,Zhang Y Y,Gui Y J,et al. Elimination of a retrotransposon for quenching genome instability in modern rice[J]. Molecular Plant,2019,12(10):1395-1407.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(23):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(23):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(23):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(23):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(23):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(23):90.

备注/Memo

备注/Memo:
收稿日期:2023-02-28
基金项目:江苏省自然科学基金(编号:BK20200951)。
作者简介:王梦娜(1996—),女,河南周口人,硕士研究生,主要从事水稻遗传育种研究。E-mail:mx120200748@yzu.edu.cn。
通信作者:于恒秀,博士,教授,主要从事水稻分子细胞遗传学、基因工程育种研究。E-mail:hxyu@yzu.edu.cn。
更新日期/Last Update: 2023-12-05