|本期目录/Table of Contents|

[1]石睿,罗斌,张晗,等.种子活力性状无损速测技术研究进展[J].江苏农业科学,2024,52(7):1-10.
 Shi Rui,et al.Research progress on non-destructive rapid measurement technology for seed vigor[J].Jiangsu Agricultural Sciences,2024,52(7):1-10.
点击复制

种子活力性状无损速测技术研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第7期
页码:
1-10
栏目:
专论与综述
出版日期:
2024-04-05

文章信息/Info

Title:
Research progress on non-destructive rapid measurement technology for seed vigor
作者:
石睿12罗斌12张晗1侯佩臣1周亚男1王成12
1.北京市农林科学院智能装备技术研究中心/北京市农林科学院信息技术研究中心,北京 100097;2.江苏大学农业工程学院,江苏镇江 212013
Author(s):
Shi Ruiet al
关键词:
种子活力性状近红外光谱高光谱成像X射线成像图像处理无损速测技术研究进展
Keywords:
-
分类号:
S330.2
DOI:
-
文献标志码:
A
摘要:
种子是农业生产中最重要的生产资料,其品质直接关系到整个生产活动的丰歉。活力是种子的重要评价指标,高活力的种子不仅田间表现优秀、抵抗逆境能力强,还更利于长时间储藏。传统的种子活力检测多在实验室内进行,采用的发芽试验等方法精度较高、科学性强,但有损检测且效率较低。近年来,光谱及成像技术以其快速、无损等优势,在种子检测领域中得到了广泛关注和应用。首先,归纳传统种子活力检测方法的检测原理和判定方法,并总结传统方法存在的共性问题;其次,综述无损速测技术在种子活力检测领域的应用和进展,对比分析各种技术的工作原理和检测策略,重点就近红外光谱技术和高光谱成像技术的应用展开讨论;最后,在此基础上结合种子活力的实际检测要求,探讨目前无损速测技术在种子活力检测应用领域存在的问题,总结当前无损速测检测技术呈现多技术融合、精选分级、高通用性和多元发展的发展趋势,以期为种子活力性状的无损速测技术提供参考。
Abstract:
-

参考文献/References:

[1]ElMasry G,Mandour N,Al-Rejaie S,et al. Recent applications of multispectral imaging in seed phenotyping and quality monitoring:an overview[J]. Sensors,2019,19(5):1090.
[2]Wang D,Wang K,Wu J Z,et al. Progress in research on rapid and non-destructive detection of seed quality based on spectroscopy and imaging technology[J]. Spectroscopy and Spectral Analysis,2021,41(1):52-59.
[3]段洁利,王韬隐,付函,等. 光谱及成像技术在种子活力检验中的应用研究进展[J]. 现代农业装备,2020,41(2):2-7.
[4]Priya T S R,Manickavasagan A.Characterising corn grain using infrared imaging and spectroscopic techniques:a review[J]. Journal of Food Measurement and Characterization,2021,15(4):3234-3249.
[5]李孝凡,王成,宋鹏,等. 种子活力无损检测方法研究进展[J]. 种子,2019,38(6):61-65.
[6]Liu W J,Liu J,Jiang J M,et al. Comparison of partial least squares-discriminant analysis,support vector machines and deep neural networks for spectrometric classification of seed vigour in a broad range of tree species[J]. Journal of Near Infrared Spectroscopy,2021,29(1):33-41.
[7]Wang W Q,Liu S J,Song S Q,et al. Proteomics of seed development,desiccation tolerance,germination and vigor[J]. Plant Physiology and Biochemistry,2015,86:1-15.
[8]Sharma A D,Rathore S V S,Srinivasan K,et al. Comparison of various seed priming methods for seed germination,seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench) [J]. Scientia Horticulturae,2014,165:75-81.
[9]Demirkaya M. Relationships between antioxidant enzymes and physiological variations occur during ageing of pepper seeds[J]. Horticulture,Environment,and Biotechnology,2013,54(2):97-102.
[10]Qin P,Kong Z Y,Liao X H,et al. Effects of accelerated aging on physiological and biochemical characteristics of waxy and non-waxy wheat seeds[J]. Journal of Northeast Agricultural University,2011,18(2):7-12.
[11]任利沙,顾日良,贾光耀,等. 种子出苗率对玉米个体生长和群体产量的影响[J]. 中国农业大学学报,2017,22(4):10-15.
[12]Ma W G,Zhang Z H,Zheng Y Y,et al. Determination of tobacco (Nicotiana tabacum) seed vigour using controlled deterioration followed by a conductivity test[J]. Seed Science and Technology,2020,48(1):1-10.
[13]Lazar S L,Mira S,Pamfil D,et al. Germination and electrical conductivity tests on artificially aged seed lots of 2 wall-rocket species[J]. Turkish Journal of Agriculture and Forestry,2014,38:857-864.
[14]喻方圆,唐燕飞. 四唑染色法快速测定任豆种子生活力的研究[J]. 种子,2004,23(7):40-42.
[15]盛海平,汪为民,刘华开,等. 水稻种子生活力四唑测定值与发芽率间的相关性[J]. 种子,2000,19(2):30-31.
[16]Lestander T A,Geladi P.NIR spectral information used to predict water content of pine seeds from multivariate calibration[J]. Canadian Journal of Forest Research,2005,35(5):1139-1148.
[17]Kusumaningrum D,Lee H,Lohumi S,et al. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy[J]. Journal of the Science of Food and Agriculture,2018,98(5):1734-1742.
[18]金文玲,曹乃亮,朱明东,等. 基于近红外超连续激光光谱的水稻种子活力无损分级检测研究[J]. 中国光学,2020,13(5):1032-1043.
[19]白京,彭彦昆,王文秀. 基于可见近红外光谱玉米种子活力的无损检测方法[J]. 食品安全质量检测学报,2016,7(11):4472-4477.
[20]Yasmin J,Ahmed M R,Lohumi S,et al. Classification method for viability screening of naturally aged watermelon seeds using FT-NIR spectroscopy[J]. Sensors,2019,19(5):1190.
[21]Fan Y M,Ma S C,Wu T T. Individual wheat kernels vigor assessment based on NIR spectroscopy coupled with machine learning methodologies[J]. Infrared Physics & Technology,2020,105:103213.
[22]Tigabu M,Daneshvar A,Wu P F,et al. Rapid and non-destructive evaluation of seed quality of Chinese fir by near infrared spectroscopy and multivariate discriminant analysis[J]. New Forests,2019,51:395-408.
[23]李武,李妍,李高科,等. 高温老化下甜玉米种子活力近红外光谱检测技术研究[J]. 核农学报,2018,32(8):1611-1618.
[24]曲歌. 基于近红外光谱数据的水稻种子活力预测模型研究[D]. 大庆:黑龙江八一农垦大学,2019.
[25]Pang L,Men S,Yan L,et al. Rapid vitality estimation and prediction of corn seeds based on spectra and images using deep learning and hyperspectral imaging techniques[J]. IEEE Access,2020,8:123026-123036.
[26]Seo Y,Lee H,Bae H J,et al. Optimized multivariate analysis for the discrimination of cucumber green mosaic mottle virus-infected watermelon seeds based on spectral imaging[J]. Journal of Biosystems Engineering,2019,44(2):95-102.
[27]Zhou X,Sun J,Tian Y,et al. Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images[J]. International Journal of Remote Sensing,2020,41(6):2263-2276.
[28]Matzrafi M,Herrmann I,Nansen C,et al. Hyperspectral technologies for assessing seed germination and trifloxysulfuron-methyl response in Amaranthus palmeri (palmer amaranth) [J]. Frontiers in Plant Science,2017,8:474.
[29]Nansen C,Zhao G P,Dakin N,et al. Using hyperspectral imaging to determine germination of native Australian plant seeds[J]. Journal of Photochemistry and Photobiology(B:Biology),2015,145:19-24.
[30]Dumont J,Hirvonen T,Heikkinen V,et al. Thermal and hyperspectral imaging for Norway spruce (Picea abies) seeds screening[J]. Computers and Electronics in Agriculture,2015,116:118-124.
[31]He X T,Feng X P,Sun D W,et al. Rapid and nondestructive measurement of rice seed vitality of different years using near-infrared hyperspectral imaging[J]. Molecules,2019,24(12):2227.
[32]Cui H W,Cheng Z S,Li P,et al. Prediction of sweet corn seed germination based on hyperspectral image technology and multivariate data regression[J]. Sensors,2020,20(17):4744.
[33]Zhang T T,Fan S X,Xiang Y Y,et al. Non-destructive analysis of germination percentage,germination energy and simple vigour index on wheat seeds during storage by Vis/NIR and SWIR hyperspectral imaging[J]. Spectrochimica Acta(Part A:Molecular and Biomolecular Spectroscopy),2020,239:118488.
[34]张林. 基于高光谱图像技术的水稻种子品种及活力等级检测研究[D]. 镇江:江苏大学,2021.
[35]Ma T,Tsuchikawa S,Inagaki T.Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach[J]. Computers and Electronics in Agriculture,2020,177:105683.
[36]Yang Y,Chen J P,He Y,et al. Assessment of the vigor of rice seeds by near-infrared hyperspectral imaging combined with transfer learning[J]. RSC Advances,2020,10(72):44149-44158.
[37]Zhang L,Sun H,Rao Z H,et al. Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds[J]. Spectrochimica Acta(Part A:Molecular and Biomolecular Spectroscopy),2020,229:117973.
[38]Wu N,Weng S Z,Chen J X,et al. Deep convolution neural network with weighted loss to detect rice seeds vigor based on hyperspectral imaging under the sample-imbalanced condition[J]. Computers and Electronics in Agriculture,2022,196:106850.
[39]Baek I,Kusumaningrum D,Kandpal L M,et al. Rapid measurement of soybean seed viability using kernel-based multispectral image analysis[J]. Sensors,2019,19(2):271.
[40]Akbar F M,Mukasa P,Santosh L,et al. Online application of a hyperspectral imaging system for the sorting of adulterated almonds[J]. Applied Sciences,2020,10(18):65-69.
[41]Zhang J,Dai L M,Cheng F.Classification of frozen corn seeds using hyperspectral VIS/NIR reflectance imaging[J]. Molecules,2019,24(1):149.
[42]Wakholi C,Kandpal L M,Lee H,et al. Rapid assessment of corn seed viability using short wave infrared line-scan hyperspectral imaging and chemometrics[J]. Sensors and Actuators(B:Chemical),2018,255:498-507.
[43]de Medeiros A D,Bernardes R C,da Silva L J,et al. Deep learning-based approach using X-ray images for classifying Crambe abyssinica seed quality[J]. Industrial Crops and Products,2021,164:113378.
[44]Leo-Araújo  F,Gomes F G Jr,de Silva A R,et al. Evaluation of the desiccation of Campomanesia adamantium seed using radiographic analysis and the relation with physiological potential[J]. Agronomy Journal,2019,111(2):592-600.
[45]Abud H F,Cícero S M,Gomes F G Jr.Radiographic images and relationship of the internal morphology and physiological potential of broccoli seeds[J]. Acta Scientiarum Agronomy,2018,40(1):34950.
[46]Pinheiro D T,Capobiango N P,de Medeiros A D,et al. Assessment of the physical and physiological quality of Piptadenia gonoacantha seeds (Mart.) J.F.Macbr.using image analysis[J]. Revista árvore,2020,44:e4426.
[47]de Medeiros A D,Pinheiro D T,Xavier W A,et al. Quality classification of Jatropha curcas seeds using radiographic images and machine learning[J]. Industrial Crops and Products,2020,146:112162.
[48]de Medeiros A D,Bernardes R C,da Silva L J,et al. Deep learning-based approach using X-ray images for classifying Crambe abyssinica seed quality[J]. Industrial Crops and Products,2021,164:113378.
[49]Galletti P A,Carvalho M E A,Hirai W Y,et al. Integrating optical imaging tools for rapid and non-invasive characterization of seed quality:tomato (Solanum lycopersicum L.) and carrot (Daucus carota L.) as study cases[J]. Frontiers in Plant Science,2020,11:577851.
[50]da Silva C B,Oliveira N M,de Carvalho M E A,et al. Autofluorescence-spectral imaging as an innovative method for rapid,non-destructive and reliable assessing of soybean seed quality[J]. Scientific Reports,2021,11:17834.
[51]Batista T B,Mastrangelo C B,de Medeiros A D,et al. A reliable method to recognize soybean seed maturation stages based on autofluorescence-spectral imaging combined with machine learning algorithms[J]. Frontiers in Plant Science,2022,13:914287.
[52]de Medeiros A D,da Silva L J,Ribeiro J P O,et al. Machine learning for seed quality classification:an advanced approach using merger data from FT-NIR spectroscopy and X-ray imaging[J]. Sensors,2020,20(15):4319.
[53]de Jesus Martins Bianchini V,Mascarin G M,Silva L C A S,et al. Multispectral and X-ray images for characterization of Jatropha curcas L. seed quality[J]. Plant Methods,2021,17(1):1-13.

相似文献/References:

[1]单成海.镉、铅胁迫对洋葱种子萌发的影响[J].江苏农业科学,2013,41(04):160.
[2]潘伟,张爽,卞勇,等.赤霉素和温度对野生长柱金丝桃种子萌发的影响[J].江苏农业科学,2013,41(04):175.
[3]张秋菊,肖智,汪英侠.花楸种子生物学特性研究进展[J].江苏农业科学,2013,41(04):177.
[4]张成霞,张衡峰,汤庚国.超声波、赤霉素对南天竹种子萌发的影响[J].江苏农业科学,2014,42(12):234.
 Zhang Chengxia,et al.Effects of ultrasonic wave and gibberellin on seed germination of Nandina domestica[J].Jiangsu Agricultural Sciences,2014,42(7):234.
[5]余乐,兰芹英,姜宗庆.铁皮石斛离体快繁技术[J].江苏农业科学,2014,42(11):268.
 Yu Le,et al(8).Study on in vitro rapid propagation of Dendrobium officinale Kimura et Migo[J].Jiangsu Agricultural Sciences,2014,42(7):268.
[6]朱昌叁,陈荣,黎素平,等.截叶栝楼种子检验及种子萌发特性的研究[J].江苏农业科学,2014,42(11):270.
 Zhu Changsan,et al(70).Study on seed testing and germination characteristics of Trichosanthes truncata[J].Jiangsu Agricultural Sciences,2014,42(7):270.
[7]董青松,闫志刚,韦树根,等.五指毛桃种子生物学特性研究[J].江苏农业科学,2014,42(11):278.
 Dong Qingsong,et al(78).Study on biological characteristics of Ficus hirta seed[J].Jiangsu Agricultural Sciences,2014,42(7):278.
[8]钱亚明,赵密珍,庞夫花.不同产地红阳和徐香猕猴桃种子发芽试验[J].江苏农业科学,2014,42(10):154.
 Qian Yaming,et al.Seed germination test of kiwifruit cultivars “Hongyang” and “Xuxiang” from different habitats[J].Jiangsu Agricultural Sciences,2014,42(7):154.
[9]宋刚,沈菲,王庆涛,等.茅苍术无菌培养体系的构建[J].江苏农业科学,2013,41(11):46.
 Song Gang,et al.Construction of sterile culture system of Atractylodes lancea (Thunb.) DC.[J].Jiangsu Agricultural Sciences,2013,41(7):46.
[10]杨建春,白和盛,朱俊凯,等.小麦种子的烘干技术[J].江苏农业科学,2013,41(12):288.
 Yang Jianchun,et al.Drying technology of wheat seeds[J].Jiangsu Agricultural Sciences,2013,41(7):288.

备注/Memo

备注/Memo:
收稿日期:2023-05-12
基金项目:广东省重点领域研发计划(编号:2022B0202110003);“科技创新2030”重大项目(编号:2022ZD0115701)。
作者简介:石睿(1998—),男,江苏无锡人,硕士研究生,主要从事种子活力无损检测讲究。E-mail:993499350@qq.com。
通信作者:王成,博士,研究员,主要从事农业智能装备研究。E-mail:wangc@nercita.org.cn。
更新日期/Last Update: 2024-04-05