[1]陈学森,王楠,张宗营,等. 关于果树种质资源与遗传育种若干问题的理解与思考[J]. 中国农业科学,2022,55(17):3395-3410.
[2]王力荣,吴金龙. 中国果树种质资源研究与新品种选育70年[J]. 园艺学报,2021,48(4):749-758.
[3]Zahid G,Aka Kaar Y,Dnmez D,et al. Perspectives and recent progress of genome-wide association studies (GWAS) in fruits[J]. Molecular Biology Reports,2022,49(6):5341-5352.
[4]赵惠,房玉林,张颖,等. 关联分析及其在果树育种研究中的应用[J]. 分子植物育种,2018,16(7):2291-2299.
[5]周海平,张帆,陈凯,等. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报,2023,49(5):1170-1183.
[6]徐鑫,张德华,赵吉顺,等. 普通小麦小穗粒数性状全基因组关联分析[J]. 植物遗传资源学报,2022,23(4):1098-1110.
[7]李婷,董远,张君,等. 玉米杂交种穗部性状的全基因组关联分析[J]. 中国农业科学,2022,55(13):2485-2499.
[8]唐玉凤,姚敏,何昕,等. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报,2023,49(7):1829-1842.
[9]王娟,马晓梅,周小凤,等. 棉花产量构成因素性状的全基因组关联分析[J]. 中国农业科学,2022,55(12):2265-2277.
[10]梁腾月,谷勇哲,马英杰,等. 大豆耐低磷性全基因组关联分析[J]. 植物遗传资源学报,2023,24(1):237-251.
[11]彭芳芳,龙治坚,魏召新,等. 樱桃种质SCoT分子标记与叶片表型性状关联分析[J]. 园艺学报,2021,48(2):325-335.
[12]李雄伟,贾惠娟,高中山. 桃基因组及全基因组关/联分析研究进展[J]. 遗传,2013,35(10):1167-1178.
[13]储宝华,曹富国,卞宁宁,等. 84个苹果栽培品种对斑点落叶病的抗性评价和全基因组关联分析[J]. 中国农业科学,2022,55(18):3613-3628.
[14]胡哲辉,刘园,王江波,等. 3个品种梨香气感官品质与挥发性物质关联分析[J]. 华中农业大学学报,2022,41(4):217-225.
[15]Guo D L,Zhao H L,Li Q,et al. Genome-wide association study of berry-related traits in grape (Vitis vinifera L.) based on genotyping-by-sequencing markers[J]. Horticulture Research,2019,6(1):1655-1667.
[16]Minamikawa M F,Nonaka K,Kaminuma E,et al. Genome-wide association study and genomic prediction in citrus:potential of genomics-assisted breeding for fruit quality traits[J]. Scientific Reports,2017,7(1):1-13.
[17]Flint-Garcia S A,Thornsberry J M,Th B E. Structure of linkage disequilibrium in plants.[J]. Annual Review of Plant Biology,2003,54(1):357-374.
[18]Flint-Garcia S A,Thornsberry J M,Buckler Iv E S. Structure of linkage disequilibrium in plants[J]. Annual Review of Plant Biology,2003,54(1):357-374.
[19]Abdallah J M,Goffinet B,Cierco-Ayrolles C,et al. Linkage disequilibrium fine mapping of quantitative trait loci:a simulation study[J]. Genetics Selection Evolution,2003,35(5):513-532.
[20]Alqudah A M,Sallam A,Baenziger P S,et al. GWAS:fast-forwarding gene identification and characterization in temperate cereals:lessons from barley-a review[J]. Journal of Advanced Research,2020,22:119-135.
[21]Hayes B. Overview of statistical methods for genome-wide association studies (GWAS)[J]. Methods in Molecular Biology,2013,1019:149-169.
[22]Aoun M,Carter A H,Ward B P,et al. Genome-wide association mapping of the ‘Super-Soft’ kernel texture in white winter wheat[J]. Theoretical and Applied Genetics,2021,134:2547-2559.
[23]赵宇慧,李秀秀,陈倬,等. 生物信息学分析方法Ⅰ:全基因组关联分析概述[J]. 植物学报,2020,55(6):715-732.
[24]Pritchard J K,Stephens M,Donnelly P. Inference of population structure using multilocus genotype data[J]. Genetics,2000,155(2):945-959.
[25]Yu J,Pressoir G,Briggs W H,et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nature Genetics,2006,38(2):203-208.
[26]丛佩华,张彩,韩晓,等. 我国苹果育种研究现状及展望[J]. 中国果树,2018(6):1-5.
[27]王森,何平,王海波,等. 鲁丽苹果在不同产地果实风味及品质差异分析[J]. 果树学报,2023,40(6):1135-1145.
[28]Larsen B,Migicovsky Z,Jeppesen A A,et al. Genome-wide association studies in apple reveal loci for aroma volatiles,sugar composition,and harvest date[J]. The Plant Genome,2019,12(2):180104.
[29]Noh J,Do Y S,Kim G H,et al. A genome-wide association study for the detection of genes related to apple Marssonina blotch disease resistance in apples[J]. Scientia Horticulturae,2020,262:108986.
[30]Liao P,Chen Q F,Chye M L. Transgenic Arabidopsis flowers overexpressing acyl-CoA-binding protein ACBP6 are freezing tolerant[J]. Plant and Cell Physiology,2014,55(6):1055-1071.
[31]Kerstiens G. Water transport in plant cuticles:an update[J]. Journal of Experimental Botany,2006,57(11):2493-2499.
[32]Kunst L,Samuels A L. Biosynthesis and secretion of plant cuticular wax[J]. Progress in Lipid Research,2003,42(1):51-80.
[33]Cao F,Li Z,Jiang L,et al. Genome-wide association study (GWAS) of leaf wax components of apple[J]. Stress Biology,2021,1(1):1-14.
[34]陈学森,王楠,张宗营,等. 仁果类果树资源育种研究进展Ⅰ:我国梨种质资源、品质发育及遗传育种研究进展[J]. 植物遗传资源学报,2019,20(4):791-800.
[35]张绍铃. 当前我国梨产业发展面临的重大问题和对策措施[J]. 中国果业信息,2016,33(12):12-14.
[36]Zhang M Y,Xue C,Hu H,et al. Genome-wide association studies provide insights into the genetic determination of fruit traits of pear[J]. Nature Communications,2021,12(1):1144.
[37]尹明华,吴平华,刘邦旺,等. 上饶早梨全基因组重测序和转录组的关联分析[J]. 分子植物育种,2019,17(11):3490-3496.
[38]Minamikawa M F,Takada N,Terakami S,et al. Genome-wide association study and genomic prediction using parental and breeding populations of Japanese pear (Pyrus pyrifolia Nakai)[J]. Scientific Reports,2018,8(1):1-12.
[39]姜全. 当前我国桃产业发展面临的重大问题和对策措施[J]. 中国果业信息,2017,4(1):5-6,10.
[40]Cao K,Zhou Z,Wang Q,et al. Genome-wide association study of 12 agronomic traits in peach[J]. Nature Communications,2016,7(1):13246.
[41]Wei H,Chen X,Zong X,et al. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.)[J]. PLoS One,2015,10(3):e0121164.
[42]Holuová K,Cˇmejlová J,Suran P,et al. High-resolution genome-wide association study of a large Czech collection of sweet cherry (Prunus avium L.) on fruit maturity and quality traits[J]. Horticulture Research,2023,10(1):uhac233.
[43]Mariette S,Wong Jun Tai F,Roch G,et al. Genome-wide association links candidate genes to resistance to plum pox virus in apricot (Prunus armeniaca)[J]. New Phytologist,2016,209(2):773-784.
[44]Zuriaga E,Soriano J M,Zhebentyayeva T,et al. Genomic analysis reveals MATH gene(s) as candidate(s) for plum pox virus (PPV) resistance in apricot (Prunus armeniaca L.)[J]. Molecular Plant Pathology,2013,14(7):663-677.
[45]Gupta R,Huang Y,Kieber J,et al. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis[J]. The Plant Journal,1998,16(5):581-589.
[46]Fu W,da Silva Linge C,Gasic K. Genome-wide association study of brown rot (Monilinia spp.) tolerance in peach[J]. Frontiers in Plant Science,2021,12:635914.
[47]邓秀新. 中国柑橘育种60年回顾与展望[J]. 园艺学报,2022,49(10):2063-2074.
[48]Minamikawa M F,Nonaka K,Kaminuma E,et al. Genome-wide association study and genomic prediction in citrus:potential of genomics-assisted breeding for fruit quality traits[J]. Scientific Reports,2017,7(1):4721.
[49]Imai A,Nonaka K,Kuniga T,et al. Genome-wide association mapping of fruit-quality traits using genotyping-by-sequencing approach in citrus landraces,modern cultivars,and breeding lines in Japan[J]. Tree Genetics & Genomes,2018,14(2):1-15.
[50]孙珍珠. 宽皮柑橘种质资源的多样性研究及重要农艺性状的全基因组关联分析[D]. 重庆:西南大学,2018:53-54.
[51]段长青. 当前我国葡萄产业发展面临的重大问题和对策措施[J]. 中国果业信息,2017,34(1):3-4.
[52]Zhang C,Cui L,Fang J. Genome-wide association study of the candidate genes for grape berry shape-related traits[J]. BMC Plant Biology,2022,22(1):42.
[53]Zhang C,Wu J,Cui L,et al. Mining of candidate genes for grape berry cracking using a genome-wide association study[J]. Journal of Integrative Agriculture,2022,21(8):2291-2304.
[54]Ferro L F V,Johnson T S,Benevenuto J,et al. Genome-wide association of volatiles reveals candidate loci for blueberry flavor[J]. New Phytologist,2020,226(6):1725-1737.
[55]Khadgi A,Weber C A. Genome-wide association study (GWAS) for examining the genomics controlling prickle production in red raspberry (Rubus idaeus L.)[J]. Agronomy,2020,11(1):27.
[56]Pincot D D A,Poorten T J,Hardigan M A,et al Genome-wide association mapping uncovers Fw1,a dominant gene conferring resistance to Fusarium wilt in strawberry[J]. G3:Genes,Genomes,Genetics,2018,8(5):1817-1828.
[57]Kishor D S,Noh Y,Song W H,et al. SNP marker assay and candidate gene identification for sex expression via genotyping-by-sequencing-based genome-wide associations (GWAS) analyses in oriental melon (Cucumis melo L. var. makuwa)[J]. Scientia Horticulturae,2021,276:109711.
[58]Hou L,Chen W,Zhang Z,et al. Genome-wide association studies of fruit quality traits in jujube germplasm collections using genotyping-by-sequencing[J]. The Plant Genome,2020,13(3):e20036.
[59]Kaya H B,Akdemir D,Lozano R,et al. Genome wide association study of 5 agronomic traits in olive (Olea europaea L.)[J]. Scientific Reports,2019,9(1):1-14.
[60]Hansen M,Kraft T,Ganestam S,et al. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers[J]. Genetics Research,2001,77(1):61-66.
[61]Abel H J,Larson D E,Regier A A,et al. Mapping and characterization of structural variation in 17,795 human genomes[J]. Nature,2020,583(7814):83-89.
[62]Alkan C,Coe B P,Eichler E E. Genome structural variation discovery and genotyping[J]. Nature Reviews Genetics,2011,12(5):363-376.
[63]Liu Y,Du H,Li P,et al. Pan-genome of wild and cultivated soybeans[J]. Cell,2020,182(1):162-176.
[64]Yang N,Liu J,Gao Q,et al. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement[J]. Nature Genetics,2019,51(6):1052-1059.
[65]Sun S,Zhou Y,Chen J,et al. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes[J]. Nature Genetics,2018,50(9):1289-1295.
[66]Song J M,Guan Z,Hu J,et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus[J]. Nature Plants,2020,6(1):34-45.
[67]Guan J,Xu Y,Yu Y,et al. Genome structure variation analyses of peach reveal population dynamics and a 1.67 Mb causal inversion for fruit shape[J]. Genome Biology,2021,22(1):1-25.
[68]Zhou H,Ma R,Gao L,et al. A 1.7-Mb chromosomal inversion downstream of a PpOFP1 gene is responsible for flat fruit shape in peach[J]. Plant Biotechnology Journal,2021,19(1):192-205.
[69]Guo J,Cao K,Deng C,et al. An integrated peach genome structural variation map uncovers genes associated with fruit traits[J]. Genome Biology,2020,21:1-19.
[70]Wang W,Mauleon R,Hu Z,et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature,2018,557(7703):43-49.
[71]Hu Z,Wang W,Wu Z,et al. Novel sequences,structural variations and gene presence variations of Asian cultivated rice[J]. Scientific Data,2018,5(1):1-7.
[72]Alonge M,Wang X,Benoit M,et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato[J]. Cell,2020,182(1):145-161. e23.
[73]Bennetzen J L. Transposable element contributions to plant gene and genome evolution[J]. Plant Molecular Biology,2000,42(1):251-269.
[74]Yan H,Haak D C,Li S,et al. Exploring transposable element-based markers to identify allelic variations underlying agronomic traits in rice[J]. Plant Communications,2022,3(3):100270.
[75]Domínguez M,Dugas E,Benchouaia M,et al. The impact of transposable elements on tomato diversity[J]. Nature Communications,2020,11(1):4058.
[76]Yang Q,Li Z,Li W,et al. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize[J]. Proceedings of the National Academy of Sciences,2013,110(42):16969-16974.
[77]Gusev A,Ko A,Shi H,et al. Integrative approaches for large-scale transcriptome-wide association studies[J]. Nature Genetics,2016,48(3):245-252.
[78]Gamazon E R,Wheeler H E,Shah K P,et al. A gene-based association method for mapping traits using reference transcriptome data[J]. Nature Genetics,2015,47(9):1091-1098.
[79]Wu D,Li X,Tanaka R,et al. Combining GWAS and TWAS to identify candidate causal genes for tocochromanol levels in maize grain[J]. Genetics,2022,221(4):iyac091.
[80]Lin M,Qiao P,Matschi S,et al. Integrating GWAS and TWAS to elucidate the genetic architecture of maize leaf cuticular conductance[J]. Plant Physiology,2022,189(4):2144-2158.
[81]Ma Y,Min L,Wang J,et al. Combined transcriptome GWAS and TWAS reveal genetic elements leading to male sterility during high temperature stress in cotton[J]. New Phytologist,2021,231(1):165-181.
[82]Anacleto R,Badoni S,Parween S,et al. Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice[J]. Plant Biotechnology Journal,2019,17(7):1261-1275.
[83]Tan Z,Xie Z,Dai L,et al. Genome-and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus[J]. Plant Biotechnology Journal,2022,20(1):211-225.
[84]Zhang Y,Zhang H,Zhao H,et al. Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus[J]. Genome Biology,2022,23(1):86.
[85]Li B,Ritchie M D. From GWAS to gene:transcriptome-wide association studies and other methods to functionally understand GWAS discoveries[J]. Frontiers in Genetics,2021,12:713230.
[86]Fang C,Ma Y,Wu S,et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean[J]. Genome Biology,2017,18(1):1-14.
[87]Sun S,Wang T,Wang L,et al. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications,2018,9(1):2523.
[88]李嘉琦. 基于GWAS解析水稻粒型变异的遗传基础[D]. 沈阳:沈阳师范大学,2020:46-50.
[89]Yano K,Morinaka Y,Wang F,et al. GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture[J]. Proceedings of the National Academy of Sciences,2019,116(42):21262-21267.
[90]Velasco R,Zharkikh A,Affourtit J,et al. The genome of the domesticated apple (Malus×domestica Borkh.)[J]. Nature Genetics,2010,42(10):833-839.
[91]International Peach Genome Initiative,Verde I,Abbott Ag,et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity,domestication and genome evolution[J]. Nature Genetics,2013,45(5):487-494.
[92]Wu J,Wang Z,Shi Z,et al. The genome of the pear (Pyrus bretschneideri Rehd.)[J]. Genome Research,2013,23(2):396-408.
[93]Colle M,Leisner C P,Wai C M,et al. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry[J]. Gigascience,2019,8:giz012.
[1]李子艺,王振锡,岳俊,等.基于BP神经网络的高光谱果树树种识别研究[J].江苏农业科学,2016,44(05):410.
Li Ziyi,et al.Study on recognition of fruit tree with hyperspectral data based on BP neural network[J].Jiangsu Agricultural Sciences,2016,44(11):410.
[2]张敏敏,王春耀,王学农,等.果树力学性能的试验研究[J].江苏农业科学,2015,43(04):381.
Zhang Minmin,et al.Experimental study on mechanical properties of fruit trees[J].Jiangsu Agricultural Sciences,2015,43(11):381.
[3]张俊环,孙浩元,杨丽,等.主要果树植物全基因组测序研究进展[J].江苏农业科学,2016,44(12):6.
Zhang Junhuan,et al.Research progress of whole genome sequencing of main fruit trees[J].Jiangsu Agricultural Sciences,2016,44(11):6.
[4]魏庭鹏,王春耀,闵磊,等.基于MATLAB对“Y型”果树振动共振频率的研究[J].江苏农业科学,2017,45(03):169.
Wei Tingpeng,et al.Study on vibration resonant frequency of “Y-typed” fruit trees based on MATLAB[J].Jiangsu Agricultural Sciences,2017,45(11):169.
[5]关玲,赵密珍,王庆莲,等.改良CTAB方法提取果树不同组织的RNA[J].江苏农业科学,2018,46(15):19.
Guan Ling,et al.Improved CTAB method for extracting RNA from different tissues of fruit trees[J].Jiangsu Agricultural Sciences,2018,46(11):19.
[6]卢晓雪,聂国嫒,孙海燕,等.长三角地区果蔬灰霉病病菌对5种杀菌剂的抗药性检测[J].江苏农业科学,2018,46(24):97.
Lu Xiaoxue,et al.Detection of resistance of Botrytis cinerea to five fungicides from fruit and vegetable crops in the Yangtze River Delta[J].Jiangsu Agricultural Sciences,2018,46(11):97.
[7]郝紫微,吴潇,刘哲,等.果树器官脱落的研究进展[J].江苏农业科学,2020,48(16):58.
Hao Ziwei,et al.Research progress on organ abscission of fruit trees[J].Jiangsu Agricultural Sciences,2020,48(11):58.
[8]徐汇,徐元元,李光辉.基于探地雷达的果树根系检测试验与分析[J].江苏农业科学,2022,50(2):170.
Xu Hui,et al.Experiment and analysis of fruit tree root system based on ground-penetrating radar[J].Jiangsu Agricultural Sciences,2022,50(11):170.
[9]王增磊,宋健,赵俊芳,等.果树农药残留消解特性与数学模型研究进展[J].江苏农业科学,2023,51(2):28.
Wang Zenglei,et al.Research progress on degradation characteristics and mathematical models of pesticide residues in fruit trees[J].Jiangsu Agricultural Sciences,2023,51(11):28.
[10]王中华,杨青松,李慧,等.氨基酸的生理作用及含氨基酸水溶肥料在果树上的应用策略[J].江苏农业科学,2024,52(3):21.
Wang Zhonghua,et al.Physiological effects of amino acids and application strategies of water-soluble fertilizers containing amino-acid in fruit trees[J].Jiangsu Agricultural Sciences,2024,52(11):21.