|本期目录/Table of Contents|

[1]陈显磊,王剑峰,王丽,等.根际微生物增强植物对非生物和生物胁迫耐受机制综述[J].江苏农业科学,2024,52(12):24-33.
 Chen Xianlei,et al.Rhizosphere microorganisms enhance plant tolerance to abiotic and biological stresses: a review[J].Jiangsu Agricultural Sciences,2024,52(12):24-33.
点击复制

根际微生物增强植物对非生物和生物胁迫耐受机制综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第12期
页码:
24-33
栏目:
专论与综述
出版日期:
2024-06-20

文章信息/Info

Title:
Rhizosphere microorganisms enhance plant tolerance to abiotic and biological stresses: a review
作者:
陈显磊12王剑峰4王丽12陈兰兰12吴亚娟12孔鑫12刘杰23乙引23龚记熠23
1.贵州师范大学生命科学学院,贵州贵阳 550001; 2.贵州师范大学西南喀斯特山地生物多样性保护国家林业和草原局重点实验室,贵州贵阳 550001; 3.贵州省植物生理与发育调控重点实验室,贵州贵阳 550001;4.兰州大学草地农业生态系统国家重点实验室/兰州大学草地微生物研究中心,甘肃兰州 730000
Author(s):
Chen Xianleiet al
关键词:
根际微生物 逆境胁迫 微生物功能 微生物群落 生物修复
Keywords:
-
分类号:
S182
DOI:
-
文献标志码:
A
摘要:
频繁的人类生产过程造成的土壤盐渍化、干旱、病害、重金属等不利环境,以及低温地区环境的限制,严重制约了各地区自然和社会经济的发展,伴随封山育林、植树造林等生态修复工程的大力开展和研究发现,植物因其固着性将长期面临各种生物及非生物胁迫,植物可通过改变自身的生理生化反应来响应逆境。但随着对植物响应逆境研究的不断深入,发现根际不仅是植物根系与土壤之间物质交换和能量代谢的重要界面,根际微生物的生命代谢活动还可以影响植物生长发育、新陈代谢等生理活动来帮助植物建立响应非生物和生物胁迫的抵抗和耐性机制。为了推进生态修复工程和解决人地矛盾,越来越多的科研工作者关注到干旱、盐渍、重金属、低温等地区和植物病害下根际微生物在帮助植物响应逆境过程中发挥的作用。因此本文就根际微生物增强植物耐旱、耐寒、耐盐、耐重金属、抗病害等方面的研究状况进行系统梳理,结合实例综合论述根际微生物在增强植物对非生物和生物胁迫中发挥的作用,以期为根际微生物促进农业发展和参与生态修复提供理论参考。
Abstract:
-

参考文献/References:

[1]Bais H P,Weir T L,Perry L G,et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annu Rev Plant Biol,2006,57(1):233-266.
[2]Bakker P A H M,Berendsen R L,Doornbos R F,et al. The rhizosphere revisited:root microbiomics[J]. Frontiers in Plant Science,2013,4:165.
[3]Kuzyakov Y,Razavi B S. Rhizosphere size and shape:temporal dynamics and spatial stationarity[J]. Soil Biology and Biochemistry,2019,135:343-360.
[4]Bai B,Liu W,Qiu X,et al. The root microbiome:community assembly and its contributions to plant fitness[J]. Journal of Integrative Plant Biology,2022,64(2):230-243.
[5]Ahemad M,Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria:current perspective[J]. Journal of King Saud University(Science),2014,26(1):1-20.
[6]Zeng M,Zhong Y,Cai S,et al. Deciphering the bacterial composition in the rhizosphere of Baphicacanthus cusia (NeeS) Bremek[J]. Scientific Reports,2018,8(1):15831.
[7]Figueredo M S,Ibáez F,Rodríguez J,et al. Simultaneous inoculation with beneficial and pathogenic microorganisms modifies peanut plant responses triggered by each microorganism[J]. Plant and Soil,2018,433(1/2):353-361.
[8]Gupta A,Rico-Medina A,Cao-Delgado A I. The physiology of plant responses to drought[J]. Science,2020,368(6488):266-269.
[9]Lau J A,Lennon J T. Rapid responses of soil microorganisms improve plant fitness in novel environments[J]. Proceedings of the National Academy of Sciences,2012,109(35):14058-14062.
[10]Augé R M,Toler H D,Saxton A M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions:a meta-analysis[J]. Mycorrhiza,2015,25(1):13-24.
[11]Ruth B,Khalvati M,Schmidhalter U. Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors[J]. Plant and soil,2011,342(1/2):459-468.
[12]Yaghoubian Y,Goltapeh E M,Pirdashti H,et al. Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress[J]. Agricultural Research,2014,3(3):239-245.
[13]Sarma R K,Saikia R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21[J]. Plant and soil,2014,377(1/2):111-126.
[14]Armada E,Roldán A,Azcon R. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil[J]. Microbial Ecology,2014,67(2):410-420.
[15]Sherameti I,Tripathi S,Varma A,et al. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress–related genes in leaves[J]. Molecular Plant(Microbe Interactions),2008,21(6):799-807.
[16]Kazerooni E A,Maharachchikumbura S S N,Adhikari A,et al. Rhizospheric Bacillus amyloliquefaciens protects Capsicum annuum cv. Geumsugangsan from multiple abiotic stresses via multifarious plant growth-promoting attributes[J]. Frontiers in Plant Science,2021,12:669693.
[17]Santos-Medellin C,Liechty Z,Edwards J,et al. Prolonged drought imparts lasting compositional changes to the rice root microbiome[J]. Nature Plants,2021,7(8):1065-1077.
[18]Xu L,Naylor D,Dong Z,et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria[J]. Proceedings of the National Academy of Sciences,2018,115(18):E4284-E4293.
[19]Sukweenadhi J,Kim Y J,Choi E S,et al. Paenibacillus yonginensis DCY84T induces changes in Arabidopsis thaliana gene expression against aluminum,drought,and salt stress[J]. Microbiological Research,2015,172:7-15.
[20]Yarzábal L A. Perspectives for using glacial and periglacial microorganisms for plant growth promotion at low temperatures[J]. Applied Microbiology and Biotechnology,2020,104(8):3267-3278.
[21]Paradis R,Dalpé Y,Charest C. The combined effect of arbuscular mycorrhizas and short-term cold exposure on wheat[J]. New Phytologist,1995,129(4):637-642.
[22]柏素花,董超华,刘新. VA菌根菌抗冷菌株的筛选及其对茄子抗冷性的影响[J]. 中国农学通报,2006(10):272-276.
[23]Mishra P K,Bisht S C,Ruwari P,et al. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas[J]. Archives of Microbiology,2011,193(7):497-513.
[24]Liu Y S,Geng J C,Sha X Y,et al. Effect of rhizobium symbiosis on low-temperature tolerance and antioxidant response in alfalfa (Medicago sativa L.)[J]. Frontiers in Plant Science,2019,10:538.
[25]Zhao S,Zhang Q,Liu M,et al. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences,2021,22(9):4609.
[26]Egamberdieva D,Wirth S,Li L,et al. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress[J]. Bioengineered,2017,8(4):433-438
[27]Li P S,Kong W L,Wu X Q. Salt tolerance mechanism of the rhizosphere bacterium JZ-GX1 and its effects on tomato seed germination and seedling growth[J]. Frontiers in Microbiology,2021,12:657238.
[28]Arkhipova T,Martynenko E,Sharipova G,et al. Effects of plant growth promoting rhizobacteria on the content of abscisic acid and salt resistance of wheat plants[J]. Plants,2020,9(11):1429.
[29]Jiang F,Chen L,Belimov A A,et al. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum[J]. Journal of Experimental Botany,2012,63(18):6421-6430.
[30]Khan M A,Ullah I,Waqas M,et al. Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean[J]. Symbiosis,2019,77(1):9-21.
[31]Li H,Lei P,Pang X,et al. Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4[J]. Applied Soil Ecology,2017,119:26-34.
[32]Santos A P,Belfiore C,úrbez C,et al. Extremophiles as plant probiotics to promote germination and alleviate salt stress in soybean[J]. Journal of Plant Growth Regulation,2023,42(2):946-959.
[33]Khan M A,Asaf S,Khan A L,et al. Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings[J]. BioMed Research International,2019,2019:1-15.
[34]郭彦钊,杜春辉,于烽,等. 旱区盐生植物根际促生菌的分离鉴定及其干旱、盐胁迫下促生特性[J]. 微生物学报,2023,63(2):610-622.
[35]邵美琪. 盐胁迫下枯草芽孢杆菌NCD-2菌株对番茄促生作用及对根际微生物群落多样性的影响[D]. 保定:河北农业大学,2021.
[36]田生科. 超积累东南景天(Sedum alfredii Hance)对重金属(Zn/Cd/Pb)的解毒机制[D]. 杭州:浙江大学,2010.
[37]Dary M,Chamber-Pérez M A,Palomares A J,et al. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria[J]. Journal of Hazardous Materials,2010,177(1/2/3):323-330.
[38]张璐. 微生物强化重金属污染土壤植物修复的研究[D]. 长沙:湖南大学,2007.
[39]Bhattacharyya P N,Jha D K. Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J]. World Journal of Microbiology and Biotechnology,2012,28(4):1327-1350.
[40]Ma Y,Rajkumar M,Vicente J A F,et al. Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops[J]. International Journal of Phytoremediation,2010,13(2):126-139.
[41]Carlos M H J,Stefani P V Y,Janette A M,et al. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria[J]. Microbiological Research,2016,188:53-61.
[42]Efe D. Potential plant growth-promoting bacteria with heavy metal resistance[J]. Current Microbiology,2020,77(12):3861-3868.
[43]连翠飞,李社增,晁春燕,等. 产植物激素拮抗细菌CX-5-2的筛选、鉴定及其特性研究[J]. 植物病理学报,2007(2):197-203.
[44]Garg N,Aggarwal N. Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils[J]. Plant Growth Regulation,2012,66(1):9-26.
[45]Babu A G,Shea P J,Oh B T. Trichoderma sp. PDR1-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites[J]. Science of the Total Environment,2014,476:561-567.
[46]吴佳. 外源微生物对小麦和蜈蚣草砷吸收转化的影响及机制研究[D]. 武汉:华中农业大学,2011.
[47]Srivastava S,Thakur I S. Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent[J]. Environmental Technology,2012,33(1):113-122.
[48]高鹏. 蜈蚣草非根际、根际及内生微生物对土壤砷污染的响应特征研究[D]. 上海:东华大学,2022.
[49]Sun W,Xiao E,Krumins V,et al. Rhizosphere microbial response to multiple metal (loid) s in different contaminated arable soils indicates crop-specific metal-microbe interactions[J]. Applied and Environmental Microbiology,2018,84(24):e00701-18.
[50]葛君,孟自力,张志标,等. 肥料配施对小麦根系、根际土壤微生物及秸秆养分积累的影响[J]. 江苏农业科学,2022,50(11):214-219.
[51]Gowtham H G,Murali M,Singh S B,et al. Plant growth promoting rhizobacteria-Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease[J]. Biological Control,2018,126:209-217.
[52]van Loon L C,Bakker P,Pieterse C M J. Systemic resistance induced by rhizosphere bacteria[J]. Annual Review of Phytopathology,1998,36(1):453-483.
[53]Durrant W E,Dong X. Systemic acquired resistance[J]. Annu. Rev. Phytopathol,2004,42(1):185-209.
[54]Yoo S J,Shin D J,Won H Y,et al. Aspergillus terreus JF27 promotes the growth of tomato plants and induces resistance against Pseudomonas syringae pv. tomato[J]. Mycobiology,2018,46(2):147-153.
[55]Tonelli M L,Furlan A,Taurian T,et al. Peanut priming induced by biocontrol agents[J]. Physiological and Molecular Plant Pathology,2011,75(3):100-105.
[56]Yuan J,Raza W,Shen Q,et al. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense[J]. Applied and Environmental Microbiology,2012,78(16):5942-5944.
[57]Shen T,Wang C,Yang H,et al. Identification,solid-state fermentation and biocontrol effects of Streptomyces hygroscopicus B04 on strawberry root rot[J]. Applied Soil Ecology,2016,103:36-43.
[58]邢介帅,李然,赵蕾等.生防芽孢杆菌T2胞外蛋白酶的纯化及其抗真菌作用[J]. 植物病理学报,2008,38(4):377-381.
[59]Berendsen R L,Vismans G,Yu K,et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. The ISME Journal,2018,12(6):1496-1507.
[60]Lee S M,Kong H G,Song G C,et al. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The ISME Journal,2021,15(1):330-347.
[61]Hartmann A,Schikora A. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes[J]. Journal of Chemical Ecology,2012,38(6):704-713.

相似文献/References:

[1]王梦姣,杨国鹏,乔帅,等.植物-根际微生物协同修复有机物污染土壤的研究进展[J].江苏农业科学,2017,45(01):5.
 Wang Mengjiao,et al.Research progress of plant-rhizosphere microorganism combined remediation of organic-contaminated soil[J].Jiangsu Agricultural Sciences,2017,45(12):5.
[2]毛仪楠,邓百万.白芨病菌拮抗菌株的筛选及鉴定[J].江苏农业科学,2019,47(03):103.
 Mao Yinan,et al.Screening and identification of antagonistic strains of Bletilla striata pathogenic bacteria[J].Jiangsu Agricultural Sciences,2019,47(12):103.
[3]王宁,杨洪宇,祁珊珊,等.外来植物入侵的生物多样性响应及其生态防控综述[J].江苏农业科学,2019,47(12):13.
 Wang Ning,et al.Biodiversity response and ecological control of alien plant invasion:a review[J].Jiangsu Agricultural Sciences,2019,47(12):13.
[4]董静,邢锦城,温祝桂,等.苏北滩涂盐碱地3种典型盐生植物根际土壤细菌多样性及群落结构分析[J].江苏农业科学,2021,49(8):212.
 Dong Jing,et al.Analysis of bacterial diversity and community structure in rhizosphere soil of three typical halophytes in saline-alkali land of northern Jiangsu[J].Jiangsu Agricultural Sciences,2021,49(12):212.
[5]耿晓东,周英,汪成忠,等.不同种植年限对凤丹牡丹根际真菌群落组成和多样性的影响[J].江苏农业科学,2021,49(23):145.
 Geng Xiaodong,et al.Impacts of different planting years on composition and diversity of rhizosphere fungal community of Paeonia ostia[J].Jiangsu Agricultural Sciences,2021,49(12):145.
[6]唐冬兰,唐泉,蒋立奔,等.草莓枯萎病病株与健株根际基质真菌群落组成分析[J].江苏农业科学,2021,49(24):110.
 Tang Donglan,et al.Analysis of fungal community structure in rhizosphere substrates of strawberry fusarium wilt diseased and healthy strawberry plants[J].Jiangsu Agricultural Sciences,2021,49(12):110.
[7]黄菊英,崔东,刘玉珊,等.丹参根际微生物和连作障碍的研究进展[J].江苏农业科学,2023,51(3):8.
 Huang Juying,et al.Research progress on rhizosphere microorganisms and continuous cropping barrier of Salvia miltiorrhiza[J].Jiangsu Agricultural Sciences,2023,51(12):8.
[8]赵颖,何志刚,曲航,等.不同秸秆育苗基质对水稻幼苗生长和根际微环境的影响[J].江苏农业科学,2023,51(10):100.
 Zhao Ying,et al.Effects of different straw rearing substrates on rice seedling growth and rhizosphere microenvironment[J].Jiangsu Agricultural Sciences,2023,51(12):100.
[9]袁亮,张春丽,孟自力.施用生物炭对冬小麦养分吸收、根际微生物和土壤理化性质的影响[J].江苏农业科学,2023,51(18):201.
 Yuan Liang,et al.Effects of biochar application on nutrient uptake of winter wheat,rhizosphere microorganisms and soil physical and chemical properties[J].Jiangsu Agricultural Sciences,2023,51(12):201.
[10]王雨菡,陈莲,张培珍,等.根系分泌物与根际微生物对土壤重金属污染的响应与修复作用(综述)[J].江苏农业科学,2024,52(5):19.
 Wang Yuhan,et al.Response and remediation of root exudates and rhizosphere microorganisms to soil heavy metal pollution:a review[J].Jiangsu Agricultural Sciences,2024,52(12):19.

备注/Memo

备注/Memo:
收稿日期:2023-08-04
基金项目:国家自然科学基金与贵州省喀斯特科学研究中心联合基金项目(编号:U1812401);贵州省林业局科研基金项目[编号:黔林科合(2022)28号];兰州大学中央高校基本科研业务费(编号:lzujbky-2021-ey01、lzujbky-2021-kb12)。
作者简介:陈显磊(1999—),男,贵州六盘水人,硕士研究生,研究方向为植物微生物互作。E-mail:xianleichen@163.com。
通信作者:龚记熠,硕士,高级实验师,研究方向为植物生理与生态学。E-mail:201307048@gznu.edu.cn。
更新日期/Last Update: 2024-06-20