[1]Bais H P,Weir T L,Perry L G,et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annu Rev Plant Biol,2006,57(1):233-266.
[2]Bakker P A H M,Berendsen R L,Doornbos R F,et al. The rhizosphere revisited:root microbiomics[J]. Frontiers in Plant Science,2013,4:165.
[3]Kuzyakov Y,Razavi B S. Rhizosphere size and shape:temporal dynamics and spatial stationarity[J]. Soil Biology and Biochemistry,2019,135:343-360.
[4]Bai B,Liu W,Qiu X,et al. The root microbiome:community assembly and its contributions to plant fitness[J]. Journal of Integrative Plant Biology,2022,64(2):230-243.
[5]Ahemad M,Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria:current perspective[J]. Journal of King Saud University(Science),2014,26(1):1-20.
[6]Zeng M,Zhong Y,Cai S,et al. Deciphering the bacterial composition in the rhizosphere of Baphicacanthus cusia (NeeS) Bremek[J]. Scientific Reports,2018,8(1):15831.
[7]Figueredo M S,Ibáez F,Rodríguez J,et al. Simultaneous inoculation with beneficial and pathogenic microorganisms modifies peanut plant responses triggered by each microorganism[J]. Plant and Soil,2018,433(1/2):353-361.
[8]Gupta A,Rico-Medina A,Cao-Delgado A I. The physiology of plant responses to drought[J]. Science,2020,368(6488):266-269.
[9]Lau J A,Lennon J T. Rapid responses of soil microorganisms improve plant fitness in novel environments[J]. Proceedings of the National Academy of Sciences,2012,109(35):14058-14062.
[10]Augé R M,Toler H D,Saxton A M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions:a meta-analysis[J]. Mycorrhiza,2015,25(1):13-24.
[11]Ruth B,Khalvati M,Schmidhalter U. Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors[J]. Plant and soil,2011,342(1/2):459-468.
[12]Yaghoubian Y,Goltapeh E M,Pirdashti H,et al. Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress[J]. Agricultural Research,2014,3(3):239-245.
[13]Sarma R K,Saikia R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21[J]. Plant and soil,2014,377(1/2):111-126.
[14]Armada E,Roldán A,Azcon R. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil[J]. Microbial Ecology,2014,67(2):410-420.
[15]Sherameti I,Tripathi S,Varma A,et al. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress–related genes in leaves[J]. Molecular Plant(Microbe Interactions),2008,21(6):799-807.
[16]Kazerooni E A,Maharachchikumbura S S N,Adhikari A,et al. Rhizospheric Bacillus amyloliquefaciens protects Capsicum annuum cv. Geumsugangsan from multiple abiotic stresses via multifarious plant growth-promoting attributes[J]. Frontiers in Plant Science,2021,12:669693.
[17]Santos-Medellin C,Liechty Z,Edwards J,et al. Prolonged drought imparts lasting compositional changes to the rice root microbiome[J]. Nature Plants,2021,7(8):1065-1077.
[18]Xu L,Naylor D,Dong Z,et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria[J]. Proceedings of the National Academy of Sciences,2018,115(18):E4284-E4293.
[19]Sukweenadhi J,Kim Y J,Choi E S,et al. Paenibacillus yonginensis DCY84T induces changes in Arabidopsis thaliana gene expression against aluminum,drought,and salt stress[J]. Microbiological Research,2015,172:7-15.
[20]Yarzábal L A. Perspectives for using glacial and periglacial microorganisms for plant growth promotion at low temperatures[J]. Applied Microbiology and Biotechnology,2020,104(8):3267-3278.
[21]Paradis R,Dalpé Y,Charest C. The combined effect of arbuscular mycorrhizas and short-term cold exposure on wheat[J]. New Phytologist,1995,129(4):637-642.
[22]柏素花,董超华,刘新. VA菌根菌抗冷菌株的筛选及其对茄子抗冷性的影响[J]. 中国农学通报,2006(10):272-276.
[23]Mishra P K,Bisht S C,Ruwari P,et al. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas[J]. Archives of Microbiology,2011,193(7):497-513.
[24]Liu Y S,Geng J C,Sha X Y,et al. Effect of rhizobium symbiosis on low-temperature tolerance and antioxidant response in alfalfa (Medicago sativa L.)[J]. Frontiers in Plant Science,2019,10:538.
[25]Zhao S,Zhang Q,Liu M,et al. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences,2021,22(9):4609.
[26]Egamberdieva D,Wirth S,Li L,et al. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress[J]. Bioengineered,2017,8(4):433-438
[27]Li P S,Kong W L,Wu X Q. Salt tolerance mechanism of the rhizosphere bacterium JZ-GX1 and its effects on tomato seed germination and seedling growth[J]. Frontiers in Microbiology,2021,12:657238.
[28]Arkhipova T,Martynenko E,Sharipova G,et al. Effects of plant growth promoting rhizobacteria on the content of abscisic acid and salt resistance of wheat plants[J]. Plants,2020,9(11):1429.
[29]Jiang F,Chen L,Belimov A A,et al. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum[J]. Journal of Experimental Botany,2012,63(18):6421-6430.
[30]Khan M A,Ullah I,Waqas M,et al. Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean[J]. Symbiosis,2019,77(1):9-21.
[31]Li H,Lei P,Pang X,et al. Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4[J]. Applied Soil Ecology,2017,119:26-34.
[32]Santos A P,Belfiore C,úrbez C,et al. Extremophiles as plant probiotics to promote germination and alleviate salt stress in soybean[J]. Journal of Plant Growth Regulation,2023,42(2):946-959.
[33]Khan M A,Asaf S,Khan A L,et al. Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings[J]. BioMed Research International,2019,2019:1-15.
[34]郭彦钊,杜春辉,于烽,等. 旱区盐生植物根际促生菌的分离鉴定及其干旱、盐胁迫下促生特性[J]. 微生物学报,2023,63(2):610-622.
[35]邵美琪. 盐胁迫下枯草芽孢杆菌NCD-2菌株对番茄促生作用及对根际微生物群落多样性的影响[D]. 保定:河北农业大学,2021.
[36]田生科. 超积累东南景天(Sedum alfredii Hance)对重金属(Zn/Cd/Pb)的解毒机制[D]. 杭州:浙江大学,2010.
[37]Dary M,Chamber-Pérez M A,Palomares A J,et al. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria[J]. Journal of Hazardous Materials,2010,177(1/2/3):323-330.
[38]张璐. 微生物强化重金属污染土壤植物修复的研究[D]. 长沙:湖南大学,2007.
[39]Bhattacharyya P N,Jha D K. Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J]. World Journal of Microbiology and Biotechnology,2012,28(4):1327-1350.
[40]Ma Y,Rajkumar M,Vicente J A F,et al. Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops[J]. International Journal of Phytoremediation,2010,13(2):126-139.
[41]Carlos M H J,Stefani P V Y,Janette A M,et al. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria[J]. Microbiological Research,2016,188:53-61.
[42]Efe D. Potential plant growth-promoting bacteria with heavy metal resistance[J]. Current Microbiology,2020,77(12):3861-3868.
[43]连翠飞,李社增,晁春燕,等. 产植物激素拮抗细菌CX-5-2的筛选、鉴定及其特性研究[J]. 植物病理学报,2007(2):197-203.
[44]Garg N,Aggarwal N. Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils[J]. Plant Growth Regulation,2012,66(1):9-26.
[45]Babu A G,Shea P J,Oh B T. Trichoderma sp. PDR1-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites[J]. Science of the Total Environment,2014,476:561-567.
[46]吴佳. 外源微生物对小麦和蜈蚣草砷吸收转化的影响及机制研究[D]. 武汉:华中农业大学,2011.
[47]Srivastava S,Thakur I S. Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent[J]. Environmental Technology,2012,33(1):113-122.
[48]高鹏. 蜈蚣草非根际、根际及内生微生物对土壤砷污染的响应特征研究[D]. 上海:东华大学,2022.
[49]Sun W,Xiao E,Krumins V,et al. Rhizosphere microbial response to multiple metal (loid) s in different contaminated arable soils indicates crop-specific metal-microbe interactions[J]. Applied and Environmental Microbiology,2018,84(24):e00701-18.
[50]葛君,孟自力,张志标,等. 肥料配施对小麦根系、根际土壤微生物及秸秆养分积累的影响[J]. 江苏农业科学,2022,50(11):214-219.
[51]Gowtham H G,Murali M,Singh S B,et al. Plant growth promoting rhizobacteria-Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease[J]. Biological Control,2018,126:209-217.
[52]van Loon L C,Bakker P,Pieterse C M J. Systemic resistance induced by rhizosphere bacteria[J]. Annual Review of Phytopathology,1998,36(1):453-483.
[53]Durrant W E,Dong X. Systemic acquired resistance[J]. Annu. Rev. Phytopathol,2004,42(1):185-209.
[54]Yoo S J,Shin D J,Won H Y,et al. Aspergillus terreus JF27 promotes the growth of tomato plants and induces resistance against Pseudomonas syringae pv. tomato[J]. Mycobiology,2018,46(2):147-153.
[55]Tonelli M L,Furlan A,Taurian T,et al. Peanut priming induced by biocontrol agents[J]. Physiological and Molecular Plant Pathology,2011,75(3):100-105.
[56]Yuan J,Raza W,Shen Q,et al. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense[J]. Applied and Environmental Microbiology,2012,78(16):5942-5944.
[57]Shen T,Wang C,Yang H,et al. Identification,solid-state fermentation and biocontrol effects of Streptomyces hygroscopicus B04 on strawberry root rot[J]. Applied Soil Ecology,2016,103:36-43.
[58]邢介帅,李然,赵蕾等.生防芽孢杆菌T2胞外蛋白酶的纯化及其抗真菌作用[J]. 植物病理学报,2008,38(4):377-381.
[59]Berendsen R L,Vismans G,Yu K,et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. The ISME Journal,2018,12(6):1496-1507.
[60]Lee S M,Kong H G,Song G C,et al. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The ISME Journal,2021,15(1):330-347.
[61]Hartmann A,Schikora A. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes[J]. Journal of Chemical Ecology,2012,38(6):704-713.
[1]王梦姣,杨国鹏,乔帅,等.植物-根际微生物协同修复有机物污染土壤的研究进展[J].江苏农业科学,2017,45(01):5.
Wang Mengjiao,et al.Research progress of plant-rhizosphere microorganism combined remediation of organic-contaminated soil[J].Jiangsu Agricultural Sciences,2017,45(12):5.
[2]毛仪楠,邓百万.白芨病菌拮抗菌株的筛选及鉴定[J].江苏农业科学,2019,47(03):103.
Mao Yinan,et al.Screening and identification of antagonistic strains of Bletilla striata pathogenic bacteria[J].Jiangsu Agricultural Sciences,2019,47(12):103.
[3]王宁,杨洪宇,祁珊珊,等.外来植物入侵的生物多样性响应及其生态防控综述[J].江苏农业科学,2019,47(12):13.
Wang Ning,et al.Biodiversity response and ecological control of alien plant invasion:a review[J].Jiangsu Agricultural Sciences,2019,47(12):13.
[4]董静,邢锦城,温祝桂,等.苏北滩涂盐碱地3种典型盐生植物根际土壤细菌多样性及群落结构分析[J].江苏农业科学,2021,49(8):212.
Dong Jing,et al.Analysis of bacterial diversity and community structure in rhizosphere soil of three typical halophytes in saline-alkali land of northern Jiangsu[J].Jiangsu Agricultural Sciences,2021,49(12):212.
[5]耿晓东,周英,汪成忠,等.不同种植年限对凤丹牡丹根际真菌群落组成和多样性的影响[J].江苏农业科学,2021,49(23):145.
Geng Xiaodong,et al.Impacts of different planting years on composition and diversity of rhizosphere fungal community of Paeonia ostia[J].Jiangsu Agricultural Sciences,2021,49(12):145.
[6]唐冬兰,唐泉,蒋立奔,等.草莓枯萎病病株与健株根际基质真菌群落组成分析[J].江苏农业科学,2021,49(24):110.
Tang Donglan,et al.Analysis of fungal community structure in rhizosphere substrates of strawberry fusarium wilt diseased and healthy strawberry plants[J].Jiangsu Agricultural Sciences,2021,49(12):110.
[7]黄菊英,崔东,刘玉珊,等.丹参根际微生物和连作障碍的研究进展[J].江苏农业科学,2023,51(3):8.
Huang Juying,et al.Research progress on rhizosphere microorganisms and continuous cropping barrier of Salvia miltiorrhiza[J].Jiangsu Agricultural Sciences,2023,51(12):8.
[8]赵颖,何志刚,曲航,等.不同秸秆育苗基质对水稻幼苗生长和根际微环境的影响[J].江苏农业科学,2023,51(10):100.
Zhao Ying,et al.Effects of different straw rearing substrates on rice seedling growth and rhizosphere microenvironment[J].Jiangsu Agricultural Sciences,2023,51(12):100.
[9]袁亮,张春丽,孟自力.施用生物炭对冬小麦养分吸收、根际微生物和土壤理化性质的影响[J].江苏农业科学,2023,51(18):201.
Yuan Liang,et al.Effects of biochar application on nutrient uptake of winter wheat,rhizosphere microorganisms and soil physical and chemical properties[J].Jiangsu Agricultural Sciences,2023,51(12):201.
[10]王雨菡,陈莲,张培珍,等.根系分泌物与根际微生物对土壤重金属污染的响应与修复作用(综述)[J].江苏农业科学,2024,52(5):19.
Wang Yuhan,et al.Response and remediation of root exudates and rhizosphere microorganisms to soil heavy metal pollution:a review[J].Jiangsu Agricultural Sciences,2024,52(12):19.