|本期目录/Table of Contents|

[1]温彬彬,张华,孟祥龙.基于改进YOLO v5的轻量化苹果检测方法[J].江苏农业科学,2024,52(12):217-223.
 Wen Binbin,et al.A lightweight apple detection method based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2024,52(12):217-223.
点击复制

基于改进YOLO v5的轻量化苹果检测方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第12期
页码:
217-223
栏目:
农业工程与信息技术
出版日期:
2024-06-20

文章信息/Info

Title:
A lightweight apple detection method based on improved YOLO v5
作者:
温彬彬1张华1孟祥龙2
1.河北工业职业技术大学,河北石家庄,054000; 2.河北农业大学,河北保定,071000
Author(s):
Wen Binbinet al
关键词:
目标检测YOLO v5FasterNet网络边框角点ECIoU
Keywords:
-
分类号:
TP391.41
DOI:
-
文献标志码:
A
摘要:
为了实现苹果采摘过程中准确快速的识别,本研究提出一种融合FasterNet模型的YOLO v5改进苹果检测算法。首先在基准图像特征提取模块中使用FasterNet架构替代YOLO v5模型中的卷积块和CSPLayer,降低算法复杂度并增强小目标的特征提取能力;然后提出了利用ECIoU损失函数来预测目标位置偏差,通过增加边框角点损失来描述预测框与真实目标框之间的位置偏差信息,进一步提高了苹果检测的准确性,解决了YOLO v5算法对有遮挡的密集目标检测效果不佳的问题;最后在检测后处理阶段提出ECIoU-NMS方法以优化重叠目标框的选择。在通用数据集MS COCO和自建数据集上对本研究所提方法与YOLO v5算法进行了对比试验。本研究所提算法模型参数量下降了12%,计算量下降了25%,帧率提升了23%。在通用数据集MS COCO上mAP0.5mAP0.5 ∶0.95指标分别提升了29、1.9百分点,在自建苹果数据集上mAP0.5mAP0.5 ∶0.95指标分别提升了2.5、1.9百分点。本研究方法性能优于YOLO v5,且模型的轻量化使其更容易在苹果采摘机器人上部署。
Abstract:
-

参考文献/References:

[1]孙丰刚,王云露,兰鹏,等. 基于改进YOLO v5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报,2022,38(11):171-179.
[2]王丽娟,陈浩然,季石军,等. 机器视觉成熟度检测的苹果色选分拣机设计[J]. 农业与技术,2022,42(12):36-40.
[3]周桂红,马帅,梁芳芳. 基于改进YOLO v4模型的全景图像苹果识别[J]. 农业工程学报,2022,38(21):159-168.
[4]张境锋,陈伟,魏庆宇,等. 基于Des-YOLO v4的复杂环境下苹果检测方法[J]. 农机化研究,2023,45(5):20-25.
[5]杨福增,雷小燕,刘志杰,等. 基于CenterNet的密集场景下多苹果目标快速识别方法[J]. 农业机械学报,2022,53(2):265-273.
[6]Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV).Santiago:IEEE,2015:1440-1448.
[7]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:779-788.
[8]张志远,罗铭毅,郭树欣,等. 基于改进YOLO v5的自然环境下樱桃果实识别方法[J]. 农业机械学报,2022,53(增刊1):232-240.
[9]Li C Y,Li L L,Jiang H L,et al. YOLO v6:a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2023-10-09].http://arxiv.org/abs/2209.02976.
[10]Wang C Y,Bochkovskiy A,Liao H Y M. YOLO v7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. (2022-07-06) [2023-10-09].http://arxiv.org/abs/2207.02696.
[11]胡阵,马宗军,黄传宝,等. PSOS-YOLO v5s:一种轻量级玉米雄穗快速检测算法[J/OL]. 无线电工程,2023:1-11[2023-10-09]. https://kns.cnki.net/kcms/detail/13.1097.TN.20230915.1739.002.html.
[12]彭炫,周建平,许燕,等. 改进YOLO v5识别复杂环境下棉花顶芽[J]. 农业工程学报,2023,39(16):191-197.
[13]闫彬,樊攀,王美茸,等. 基于改进YOLO v5m的采摘机器人苹果采摘方式实时识别[J]. 农业机械学报,2022,53(9):28-38,59.
[14]王勇,陶兆胜,石鑫宇,等. 基于改进YOLO v5s的不同成熟度苹果目标检测方法[J/OL]. 南京农业大学学报,2023:1-13[2023-10-09].https://kns.cnki.net/kcms/detail/32.1148.S.20230926.1201.002.html.
[15]耿磊,黄亚龙,郭永敏. 基于融合注意力机制的苹果品种分类方法[J]. 农业机械学报,2022,53(6):304-310,369.
[16]Bochkovskiy A,Wang C Y,Liao H Y M. YOLO v4:optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2023-10-09]. http://arxiv.org/abs/2004.10934.
[17]刘龙哲,刘刚,徐红鹏,等. 面向单阶段目标检测的损失函数优化设计[J/OL]. 电光与控制,2023:1-11[2023-11-18]. https://kns.cnki.net/kcms/detail/41.1227.TN.20231115.1522.018.html.
[18]Chen J R,Kao S H,He H,et al. Run,dont walk:chasing higher FLOPS for faster neural networks[EB/OL]. (2023-05-21)[2023-11-18]. http://arxiv.org/abs/2303.03667.
[19]Ma X L,Guo F M,Niu W,et al. PCONV:the missing but desirable sparsity in DNN weight pruning for real-time execution on mobile devices[EB/OL]. (2019-09-06)[2023-11-18]. http://arxiv.org/abs/1909.05073.

相似文献/References:

[1]罗巍,陈曙东,王福涛,等.基于深度学习的大型食草动物种群监测方法[J].江苏农业科学,2020,48(20):247.
 Luo Wei,et al.Monitoring method of large herbivore population based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(12):247.
[2]陈恩会,褚姝频,王炜,等.基于RetinaNet模型的梨小食心虫智能识别计数方法[J].江苏农业科学,2021,49(24):205.
 Chen Enhui,et al.Intelligent recognition and counting method of Grapholitha molesta based on RetinaNet model[J].Jiangsu Agricultural Sciences,2021,49(12):205.
[3]陶雪阳,施振旦,郭彬彬,等.基于RFID与目标检测的种鹅个体产蛋信息监测方法[J].江苏农业科学,2023,51(5):200.
 Tao Xueyang,et al.Monitoring method of individual egg-laying information of breeding geese based on RFID and object detection[J].Jiangsu Agricultural Sciences,2023,51(12):200.
[4]严陈慧子,田芳明,谭峰,等.基于改进YOLOv4的水稻病害快速检测方法[J].江苏农业科学,2023,51(6):187.
 Yanchen Huizi,et al.Rapid detection method of rice diseases based on improved YOLOv4[J].Jiangsu Agricultural Sciences,2023,51(12):187.
[5]周绍发,肖小玲,刘忠意,等.改进的基于YOLOv5s苹果树叶病害检测[J].江苏农业科学,2023,51(13):212.
 Zhou Shaofa,et al.Improved apple leaf disease detection based on YOLOv5s[J].Jiangsu Agricultural Sciences,2023,51(12):212.
[6]姜国权,杨正元,霍占强,等.基于改进YOLOv5网络的疏果前苹果检测方法[J].江苏农业科学,2023,51(14):205.
 Jiang Guoquan,et al.Apple detection method before thinning fruit based on improved YOLOv5 model[J].Jiangsu Agricultural Sciences,2023,51(12):205.
[7]王圆圆,林建,王姗.基于YOLOv4-tiny模型的水稻早期病害识别方法[J].江苏农业科学,2023,51(16):147.
 Wang Yuanyuan,et al.An early rice disease recognition method based on YOLOv4-tiny model[J].Jiangsu Agricultural Sciences,2023,51(12):147.
[8]杜鹏程,蒋笃忠,向阳,等.基于YOLO v5s目标检测算法的烤烟鲜叶成熟度识别方法[J].江苏农业科学,2023,51(19):158.
 Du Pengcheng,et al.Identification method for fresh leaf maturity of flue-cured tobacco based on YOLO v5s target detection algorithm[J].Jiangsu Agricultural Sciences,2023,51(12):158.
[9]刘忠意,魏登峰,李萌,等.基于改进YOLO v5的橙子果实识别方法[J].江苏农业科学,2023,51(19):173.
 Liu Zhongyi,et al.Orange fruit recognition method based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2023,51(12):173.
[10]倪智涛,胡伟健,李宝山,等.一种基于图像分类与目标检测协同的番茄细粒度病害识别方法[J].江苏农业科学,2023,51(22):221.
 Ni Zhitao,et al.A novel method for tomato fine-grained disease recognition based on image classification and target detection[J].Jiangsu Agricultural Sciences,2023,51(12):221.
[11]李炳鑫,宋涛,高婕,等.基于YOLO v5模型的缺钙草莓叶片识别方法[J].江苏农业科学,2024,52(20):74.
 Li Bingxin,et al.Identification method of calcium-deficient strawberry leaves based on YOLO v5 model[J].Jiangsu Agricultural Sciences,2024,52(12):74.

备注/Memo

备注/Memo:
收稿日期:2023-12-19
基金项目:河北省自然科学基金(编号:C2021204034);石家庄市科技计划(编号:231130351);河北省“三三三人才工程”项目(编号:A202101035)。
作者简介:温彬彬(1989—),女,河北邢台人,硕士,讲师,主要从事图像处理及模式识别研究。E-mail:ge_wenbinbin@163.com。
通信作者:张华,硕士,副教授,主要从事计算机视觉及模式识别研究。E-mail:94472907@qq.com。
更新日期/Last Update: 2024-06-20