[1]孙丰刚,王云露,兰鹏,等. 基于改进YOLO v5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报,2022,38(11):171-179.
[2]王丽娟,陈浩然,季石军,等. 机器视觉成熟度检测的苹果色选分拣机设计[J]. 农业与技术,2022,42(12):36-40.
[3]周桂红,马帅,梁芳芳. 基于改进YOLO v4模型的全景图像苹果识别[J]. 农业工程学报,2022,38(21):159-168.
[4]张境锋,陈伟,魏庆宇,等. 基于Des-YOLO v4的复杂环境下苹果检测方法[J]. 农机化研究,2023,45(5):20-25.
[5]杨福增,雷小燕,刘志杰,等. 基于CenterNet的密集场景下多苹果目标快速识别方法[J]. 农业机械学报,2022,53(2):265-273.
[6]Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV).Santiago:IEEE,2015:1440-1448.
[7]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:779-788.
[8]张志远,罗铭毅,郭树欣,等. 基于改进YOLO v5的自然环境下樱桃果实识别方法[J]. 农业机械学报,2022,53(增刊1):232-240.
[9]Li C Y,Li L L,Jiang H L,et al. YOLO v6:a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2023-10-09].http://arxiv.org/abs/2209.02976.
[10]Wang C Y,Bochkovskiy A,Liao H Y M. YOLO v7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. (2022-07-06) [2023-10-09].http://arxiv.org/abs/2207.02696.
[11]胡阵,马宗军,黄传宝,等. PSOS-YOLO v5s:一种轻量级玉米雄穗快速检测算法[J/OL]. 无线电工程,2023:1-11[2023-10-09]. https://kns.cnki.net/kcms/detail/13.1097.TN.20230915.1739.002.html.
[12]彭炫,周建平,许燕,等. 改进YOLO v5识别复杂环境下棉花顶芽[J]. 农业工程学报,2023,39(16):191-197.
[13]闫彬,樊攀,王美茸,等. 基于改进YOLO v5m的采摘机器人苹果采摘方式实时识别[J]. 农业机械学报,2022,53(9):28-38,59.
[14]王勇,陶兆胜,石鑫宇,等. 基于改进YOLO v5s的不同成熟度苹果目标检测方法[J/OL]. 南京农业大学学报,2023:1-13[2023-10-09].https://kns.cnki.net/kcms/detail/32.1148.S.20230926.1201.002.html.
[15]耿磊,黄亚龙,郭永敏. 基于融合注意力机制的苹果品种分类方法[J]. 农业机械学报,2022,53(6):304-310,369.
[16]Bochkovskiy A,Wang C Y,Liao H Y M. YOLO v4:optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2023-10-09]. http://arxiv.org/abs/2004.10934.
[17]刘龙哲,刘刚,徐红鹏,等. 面向单阶段目标检测的损失函数优化设计[J/OL]. 电光与控制,2023:1-11[2023-11-18]. https://kns.cnki.net/kcms/detail/41.1227.TN.20231115.1522.018.html.
[18]Chen J R,Kao S H,He H,et al. Run,dont walk:chasing higher FLOPS for faster neural networks[EB/OL]. (2023-05-21)[2023-11-18]. http://arxiv.org/abs/2303.03667.
[19]Ma X L,Guo F M,Niu W,et al. PCONV:the missing but desirable sparsity in DNN weight pruning for real-time execution on mobile devices[EB/OL]. (2019-09-06)[2023-11-18]. http://arxiv.org/abs/1909.05073.
[1]罗巍,陈曙东,王福涛,等.基于深度学习的大型食草动物种群监测方法[J].江苏农业科学,2020,48(20):247.
Luo Wei,et al.Monitoring method of large herbivore population based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(12):247.
[2]陈恩会,褚姝频,王炜,等.基于RetinaNet模型的梨小食心虫智能识别计数方法[J].江苏农业科学,2021,49(24):205.
Chen Enhui,et al.Intelligent recognition and counting method of Grapholitha molesta based on RetinaNet model[J].Jiangsu Agricultural Sciences,2021,49(12):205.
[3]陶雪阳,施振旦,郭彬彬,等.基于RFID与目标检测的种鹅个体产蛋信息监测方法[J].江苏农业科学,2023,51(5):200.
Tao Xueyang,et al.Monitoring method of individual egg-laying information of breeding geese based on RFID and object detection[J].Jiangsu Agricultural Sciences,2023,51(12):200.
[4]严陈慧子,田芳明,谭峰,等.基于改进YOLOv4的水稻病害快速检测方法[J].江苏农业科学,2023,51(6):187.
Yanchen Huizi,et al.Rapid detection method of rice diseases based on improved YOLOv4[J].Jiangsu Agricultural Sciences,2023,51(12):187.
[5]周绍发,肖小玲,刘忠意,等.改进的基于YOLOv5s苹果树叶病害检测[J].江苏农业科学,2023,51(13):212.
Zhou Shaofa,et al.Improved apple leaf disease detection based on YOLOv5s[J].Jiangsu Agricultural Sciences,2023,51(12):212.
[6]姜国权,杨正元,霍占强,等.基于改进YOLOv5网络的疏果前苹果检测方法[J].江苏农业科学,2023,51(14):205.
Jiang Guoquan,et al.Apple detection method before thinning fruit based on improved YOLOv5 model[J].Jiangsu Agricultural Sciences,2023,51(12):205.
[7]王圆圆,林建,王姗.基于YOLOv4-tiny模型的水稻早期病害识别方法[J].江苏农业科学,2023,51(16):147.
Wang Yuanyuan,et al.An early rice disease recognition method based on YOLOv4-tiny model[J].Jiangsu Agricultural Sciences,2023,51(12):147.
[8]杜鹏程,蒋笃忠,向阳,等.基于YOLO v5s目标检测算法的烤烟鲜叶成熟度识别方法[J].江苏农业科学,2023,51(19):158.
Du Pengcheng,et al.Identification method for fresh leaf maturity of flue-cured tobacco based on YOLO v5s target detection algorithm[J].Jiangsu Agricultural Sciences,2023,51(12):158.
[9]刘忠意,魏登峰,李萌,等.基于改进YOLO v5的橙子果实识别方法[J].江苏农业科学,2023,51(19):173.
Liu Zhongyi,et al.Orange fruit recognition method based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2023,51(12):173.
[10]倪智涛,胡伟健,李宝山,等.一种基于图像分类与目标检测协同的番茄细粒度病害识别方法[J].江苏农业科学,2023,51(22):221.
Ni Zhitao,et al.A novel method for tomato fine-grained disease recognition based on image classification and target detection[J].Jiangsu Agricultural Sciences,2023,51(12):221.
[11]李炳鑫,宋涛,高婕,等.基于YOLO v5模型的缺钙草莓叶片识别方法[J].江苏农业科学,2024,52(20):74.
Li Bingxin,et al.Identification method of calcium-deficient strawberry leaves based on YOLO v5 model[J].Jiangsu Agricultural Sciences,2024,52(12):74.