[1]Sriswasdi S,Yang C C,Iwasaki W. Generalist species drive microbial dispersion and evolution[J]. Nature Communications,2017,8(1):1162.
[2]Müller D B,Vogel C,Bai Y,et al. The plant microbiota:systems-level insights and perspectives[J]. Annual Review of Genetics,2016,50:211-234.
[3]Trivedi P,Leach J E,Tringe S G,et al. Plant-microbiome interactions:from community assembly to plant health[J]. Nature Reviews Microbiology,2020,18:607-621.
[4]Sánchez-Caizares C,Jorrín B,Poole P S,et al. Understanding the holobiont:the interdependence of plants and their microbiome[J]. Current Opinion in Microbiology,2017,38:188-196.
[5]Wagg C,Schlaeppi K,Banerjee S,et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications,2019,10:4841.
[6]Hardoim P R,van Overbeek L S,Berg G,et al. The hidden world within plants:ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiology and Molecular Biology Reviews,2015,79(3):293-320.
[7]Gao M,Xiong C,Gao C,et al. Disease-induced changes in plant microbiome assembly and functional adaptation[J]. Microbiome,2021,9(1):187.
[8]周芳芳,李晓婷,汤利. 合成菌群促生抗逆功能的研究进展[J]. 土壤,2023,55(6):1170-1175.
[9]Peiffer J A,Spor A,Koren O,et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(16):6548-6553.
[10]张历,杨森,魏惠军,等. 蔬菜根际微生物分析[J]. 天津农业科学,1996,4(2):17-19.
[11]Cordovez V,Dini-Andreote F,Carrión V J,et al. Ecology and evolution of plant microbiomes[J]. Annual Review of Microbiology,2019,73:69-88.
[12]马理,刘文菊. 不同生育期施用微生物菌剂对设施番茄生产和土壤养分的影响[J]. 蔬菜,2023(10):35-40.
[13]Edwards J,Johnson C,Santos-Medellín C,et al. Structure,variation,and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(8):E911-E920.
[14]Fan K K,Cardona C,Li Y T,et al. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields[J]. Soil Biology and Biochemistry,2017,113:275-284.
[15]Walters W A,Jin Z,Youngblut N,et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(28):7368-7373.
[16]郭令紫,李兴红,张玮,等. 微生物组学在葡萄枝干病害防治中的研究进展[J]. 中国果树,2021(5):1-6.
[17]张婷,黎烨,熊娟,等. 番茄不同生态位内生菌的菌群结构组成和差异性分析[J]. 基因组学与应用生物学,2020,39(12):5558-5566.
[18]Xiong C,Singh B K,He J Z,et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome[J]. Microbiome,2021,9(1):171.
[19]任春光,苏文文,潘丽珊,等. 基于高通量测序研究猕猴桃苗不同生育期根际真菌群落结构及多样性[J]. 土壤,2021,53(3):545-554.
[20]Martins G,Miot-Sertier C,Lauga B,et al. Grape berry bacterial microbiota:impact of the ripening process and the farming system[J]. International Journal of Food Microbiology,2012,158(2):93-100.
[21]Rastogi G,Coaker G L,Leveau J H J. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches[J]. FEMS Microbiology Letters,2013,348(1):1-10.
[22]Vorholt J A. Microbial life in the phyllosphere[J]. Nature Reviews Microbiology,2012,10(12):828-840.
[23]Liu H W,Brettell L E,Singh B. Linking the phyllosphere microbiome to plant health[J]. Trends in Plant Science,2020,25(9):841-844.
[24]李莹,熊立瑰,黄芳芳,等. 园艺植物叶际微生物研究进展[J]. 植物生理学报,2022,58(10):1829-1839.
[25]Lambais M R,Crowley D E,Cury J C,et al. Bacterial diversity in tree canopies of the Atlantic forest[J]. Science,2006,312(5782):1917.
[26]van der Wal A,Leveau J H J. Modelling sugar diffusion across plant leaf cuticles:the effect of free water on substrate availability to phyllosphere bacteria[J]. Environmental Microbiology,2011,13(3):792-797.
[27]Remus-Emsermann M N P,Vorholt J A. Complexities of microbial life on leaf surfaces[J]. Microbe Magazine,2014,9(11):448-452.
[28]Finkel O M,Burch A Y,Elad T,et al. Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert[J]. Applied and Environmental Microbiology,2012,78(17):6187-6193.
[29]Agler M T,Ruhe J,Kroll S,et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation[J]. PLoS Biology,2016,14(1):e1002352.
[30]Jackson C R,Denney W C.Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern Magnolia (Magnolia grandiflora)[J]. Microbial Ecology,2011,61(1):113-122.
[31]Balint-Kurti P,Simmons S J,Blum J E,et al. Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection[J]. Molecular Plant-Microbe Interactions,2010,23(4):473-484.
[32]Clotet J,Posas F. Control of cell cycle in response to osmostress:lessons from yeast[J]. Methods Enzymol,2007,428:63-76.
[33]Sasse J,Martinoia E,Northen T. Feed your friends:do plant exudates shape the root microbiome?[J]. Trends in Plant Science,2018,23(1):25-41.
[34]Zhalnina K,Louie K B,Hao Z,et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology,2018,3:470-480.
[35]Hannula S E,Boschker H T S,de Boer W,et al. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline[J]. The New Phytologist,2012,194(3):784-799.
[36]丁娜,林华,张学洪,等. 植物根系分泌物与根际微生物交互作用机制研究进展[J]. 土壤通报,2022,53(5):1212-1219.
[37]Ahmad S,Veyrat N,Gordon-Weeks R,et al. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize[J]. Plant Physiology,2011,157(1):317-327.
[38]Hu L F,Robert C A M,Cadot S,et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications,2018,9(1):2738.
[39]Huang A C,Jiang T,Liu Y X,et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science,2019,364(6440):eaau6389.
[40]Pieterse C M J,van der Does D,Zamioudis C,et al. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology,2012,28:489-521.
[41]Kniskern J M,Traw M B,Bergelson J.Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions,2007,20(12):1512-1522.
[42]Carvalhais L C,Dennis P G,Badri D V,et al. Linking jasmonic acid signaling,root exudates,and rhizosphere microbiomes[J]. Molecular Plant-Microbe Interactions,2015,28(9):1049-1058.
[43]Carrión V J,Perez-Jaramillo J,Cordovez V,et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science,2019,366(6465):606-612.
[44]Yin C T,Casa Vargas J M,Schlatter D C,et al. Rhizosphere community selection reveals bacteria associated with reduced root disease[J]. Microbiome,2021,9(1):86.
[45]Liu H W,Li J Y,Carvalhais L C,et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens[J]. The New Phytologist,2021,229(5):2873-2885.
[46]Sun L,Gao J S,Huang T,et al. Parental material and cultivation determine soil bacterial community structure and fertility[J]. FEMS Microbiology Ecology,2015,91(1):1-10.
[47]Liu H W,Brettell L E. Plant defense by VOC-induced microbial priming[J]. Trends in Plant Science,2019,24(3):187-189.
[48]李馨宇,姜宇,米刚. 不同施肥模式对土壤微生物数量和酶活性及小麦产量的影响[J]. 黑龙江农业科学,2023(1):13-17.
[49]Xun W B,Xu Z H,Li W D,et al. Long-term organic-inorganic fertilization ensures great soil productivity and bacterial diversity after natural-to-agricultural ecosystem conversion[J]. Journal of Microbiology,2016,54(9):611-617.
[50]Bei S K,Zhang Y L,Li T T,et al. Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil[J]. Agriculture,Ecosystems & Environment,2018,260:58-69.
[51]Guo Z,Han J C,Li J,et al. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure[J]. PLoS One,2019,14(4):e0216006.
[52]Zhou Y Y,Yang Z,Liu J G,et al. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease[J]. Nature Communications,2023,14(1):8126.
[53]Zhou X G,Zhang J Y,Khashi U R M,et al. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes[J]. Molecular Plant,2023,16(5):849-864.
[54]Wang N Q,Wang T Q,Chen Y,et al. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize[J]. Nature Communications,2024,15:839.
[55]Pieterse C M J,Zamioudis C,Berendsen R L,et al. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology,2014,52:347-375.
[56]Saxena A K,Kumar M,Chakdar H,et al. Bacillus species in soil as a natural resource for plant health and nutrition[J]. Journal of applied microbiology,2020,128(6):1583-1594.
[57]Ge A H,Liang Z H,Xiao J L,et al. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control[J]. Agriculture,Ecosystems & Environment,2021,312:107336.
[58]Shafi J,Tian H,Ji M. Bacillus species as versatile weapons for plant pathogens:a review[J]. Biotechnology & Biotechnological Equipment,2017,31:446-459.
[59]Kwak M J,Kong H G,Choi K,et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology,2018,36(11):1117.
[60]Gu S H,Wei Z,Shao Z Y,et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology,2020,5(8):1002-1010.
[61]Li P D,Zhu Z R,Zhang Y Z,et al. The phyllosphere microbiome shifts toward combating melanose pathogen[J]. Microbiome,2022,10(1):56.
[62]李梦玮,陈晓霞,廖礼彬,等. 丛枝菌根真菌联合拮抗菌对花椒根腐病的防治作用[J]. 西南农业学报,2023,36(11):2391-2400.
[63]邹佳迅,范晓旭,宋福强. 木霉(Trichoderma spp.)对植物土传病害生防机制的研究进展[J]. 大豆科学,2017,36(6):970-977.
[64]Wang M,Xiang L,Jiang W,et al. Soil arbuscular mycorrhizal fungal community structure and diversity in apple orchards with different replant disease severity around Bohai Bay,China[J]. Applied Soil Ecology,2022,177:104524.
[65]王瑞飞,孔盈利,魏艺璇,等. 菌剂对鸡粪-生物炭堆肥理化性质和微生物群落结构的影响[J]. 江苏农业学报,2023,39(4):966-977.
[66]佐长赓,王静怡,牛新湘,等. 内生菌与根际细菌对棉花的促生与诱导抗病作用[J]. 西南农业学报,2022,35(4):757-763.
[67]Berendsen R L,Vismans G,Yu K,et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. The ISME Journal,2018,12(6):1496-1507.
[68]Zamioudis C,Korteland J,van Pelt J A,et al. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses[J]. The Plant Journal,2015,84(2):309-322.
[69]Yadav V,Kumar M,Deep D K,et al. Withdrawal:a phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant[J]. The Journal of Biological Chemistry,2021,296:100457.
[70]Rudrappa T,Czymmek K J,Paré P W,et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology,2008,148(3):1547-1556.
[71]Wu B,Wang X,Yang L,et al. Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco[J]. Applied Soil Ecology,2016,103:1-12.
[72]Mazurier S,Corberand T,Lemanceau P,et al. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt[J]. The ISME Journal,2009,3(8):977-991.
[73]尹家康. 利用微生物组防治番茄青枯病的研究[D]. 武汉:华中农业大学,2023.
[74]Weller D M,Raaijmakers J M,Gardener B B,et al. Microbial populations responsible for specific soil suppressiveness to plant pathogens[J]. Annual Review of Phytopathology,2002,40:309-348.
[75]李长印. 硒联合茉莉酸甲酯防治番茄灰霉病的微生物学机制[D]. 武汉:华中农业大学,2022.
[76]农倩,张雯龙,蓝桃菊,等. 一株抗香蕉枯萎病DSE菌株的筛选鉴定及抗病机理初探[J]. 热带作物学报,2017,38(3):559-564.
[77]Deyett E,Rolshausen P E. Temporal dynamics of the sap microbiome of grapevine under high pierces disease pressure[J]. Frontiers in Plant Science,2019,10:1246.
[78]Zhang J Y,Liu Y X,Zhang N,et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology,2019,37(6):676-684.
[79]冀宇,武云鹏,王胤,等. 功能型复合微生物菌剂防治黄瓜根结线虫的研究[J]. 中国生物防治学报,2016,32(4):493-502.
[80]Chen S Y. Suppression of Heterodera glycines in soils from fields with long-term soybean monoculture[J]. Biocontrol Science and Technology,2007,17(2):125-134.
[81]Niu B,Paulson J N,Zheng X Q,et al. Simplified and representative bacterial community of maize roots[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(12):E2450-E2459.