|本期目录/Table of Contents|

[1]刘浩浩,李黎,刘巍,等.植物微生物组群落构建及其病害防治应用进展[J].江苏农业科学,2024,52(14):7-14.
 Liu Haohao,et al.Research progress on plant microbiome construction and its application in plant disease control[J].Jiangsu Agricultural Sciences,2024,52(14):7-14.
点击复制

植物微生物组群落构建及其病害防治应用进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第14期
页码:
7-14
栏目:
专论与综述
出版日期:
2024-07-20

文章信息/Info

Title:
Research progress on plant microbiome construction and its application in plant disease control
作者:
刘浩浩12李黎2刘巍1黄丽丽1钟彩虹2
1.西北农林科技大学植物保护学院,陕西杨凌 712100; 2.中国科学院武汉植物园/中国科学院植物种质创新与特色农业重点实验室/中国科学院猕猴桃产业技术工程实验室,湖北武汉 430074
Author(s):
Liu Haohaoet al
关键词:
植物微生物组群落构建高通量测序病害防治研究进展
Keywords:
-
分类号:
S182;S184
DOI:
-
文献标志码:
A
摘要:
植物表面及内部定殖着种类丰富的微生物群落,这些微生物与植物经过长期进化形成了互利共生的功能整体,植物寄主为微生物提供生长空间和营养,而微生物则在植物生长发育、营养摄取及植物逆境抗性等方面发挥作用。微生物群落的变化受到各种生物和非生物因素影响,目前人们对于不同因素如何驱动微生物群落构建及如何利用功能微生物提高寄主植物抗逆性等的认识仍不深入,这严重阻碍了微生物群落应用的发展。明确微生物群落构建的机制和微生物群落之间的相互作用机制,有利于扩宽微生物群落应用的深度和广度。本文总结了不同植物寄主、同一寄主不同生态位及不同生长阶段下的微生物群落差异,阐述了生物因素(生态位、病原入侵等)及非生物因素(地理位置、季节变化等)对植物地上及地下微生物群落的影响及作用机制,解析了植物微生物间的相互作用以及微生物通过竞争和诱导植物系统抗性降低病害发生的机理,介绍了合成菌群在植物应用中的研究进展,最后对微生物组在未来发展过程中可能遇见的问题进行了展望,将有效助力微生物组在植物病害防治方面的绿色高效应用。
Abstract:
-

参考文献/References:

[1]Sriswasdi S,Yang C C,Iwasaki W. Generalist species drive microbial dispersion and evolution[J]. Nature Communications,2017,8(1):1162.
[2]Müller D B,Vogel C,Bai Y,et al. The plant microbiota:systems-level insights and perspectives[J]. Annual Review of Genetics,2016,50:211-234.
[3]Trivedi P,Leach J E,Tringe S G,et al. Plant-microbiome interactions:from community assembly to plant health[J]. Nature Reviews Microbiology,2020,18:607-621.
[4]Sánchez-Caizares C,Jorrín B,Poole P S,et al. Understanding the holobiont:the interdependence of plants and their microbiome[J]. Current Opinion in Microbiology,2017,38:188-196.
[5]Wagg C,Schlaeppi K,Banerjee S,et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications,2019,10:4841.
[6]Hardoim P R,van Overbeek L S,Berg G,et al. The hidden world within plants:ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiology and Molecular Biology Reviews,2015,79(3):293-320.
[7]Gao M,Xiong C,Gao C,et al. Disease-induced changes in plant microbiome assembly and functional adaptation[J]. Microbiome,2021,9(1):187.
[8]周芳芳,李晓婷,汤利. 合成菌群促生抗逆功能的研究进展[J]. 土壤,2023,55(6):1170-1175.
[9]Peiffer J A,Spor A,Koren O,et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(16):6548-6553.
[10]张历,杨森,魏惠军,等. 蔬菜根际微生物分析[J]. 天津农业科学,1996,4(2):17-19.
[11]Cordovez V,Dini-Andreote F,Carrión V J,et al. Ecology and evolution of plant microbiomes[J]. Annual Review of Microbiology,2019,73:69-88.
[12]马理,刘文菊. 不同生育期施用微生物菌剂对设施番茄生产和土壤养分的影响[J]. 蔬菜,2023(10):35-40.
[13]Edwards J,Johnson C,Santos-Medellín C,et al. Structure,variation,and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(8):E911-E920.
[14]Fan K K,Cardona C,Li Y T,et al. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields[J]. Soil Biology and Biochemistry,2017,113:275-284.
[15]Walters W A,Jin Z,Youngblut N,et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(28):7368-7373.
[16]郭令紫,李兴红,张玮,等. 微生物组学在葡萄枝干病害防治中的研究进展[J]. 中国果树,2021(5):1-6.
[17]张婷,黎烨,熊娟,等. 番茄不同生态位内生菌的菌群结构组成和差异性分析[J]. 基因组学与应用生物学,2020,39(12):5558-5566.
[18]Xiong C,Singh B K,He J Z,et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome[J]. Microbiome,2021,9(1):171.
[19]任春光,苏文文,潘丽珊,等. 基于高通量测序研究猕猴桃苗不同生育期根际真菌群落结构及多样性[J]. 土壤,2021,53(3):545-554.
[20]Martins G,Miot-Sertier C,Lauga B,et al. Grape berry bacterial microbiota:impact of the ripening process and the farming system[J]. International Journal of Food Microbiology,2012,158(2):93-100.
[21]Rastogi G,Coaker G L,Leveau J H J. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches[J]. FEMS Microbiology Letters,2013,348(1):1-10.
[22]Vorholt J A. Microbial life in the phyllosphere[J]. Nature Reviews Microbiology,2012,10(12):828-840.
[23]Liu H W,Brettell L E,Singh B. Linking the phyllosphere microbiome to plant health[J]. Trends in Plant Science,2020,25(9):841-844.
[24]李莹,熊立瑰,黄芳芳,等. 园艺植物叶际微生物研究进展[J]. 植物生理学报,2022,58(10):1829-1839.
[25]Lambais M R,Crowley D E,Cury J C,et al. Bacterial diversity in tree canopies of the Atlantic forest[J]. Science,2006,312(5782):1917.
[26]van der Wal A,Leveau J H J. Modelling sugar diffusion across plant leaf cuticles:the effect of free water on substrate availability to phyllosphere bacteria[J]. Environmental Microbiology,2011,13(3):792-797.
[27]Remus-Emsermann M N P,Vorholt J A. Complexities of microbial life on leaf surfaces[J]. Microbe Magazine,2014,9(11):448-452.
[28]Finkel O M,Burch A Y,Elad T,et al. Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert[J]. Applied and Environmental Microbiology,2012,78(17):6187-6193.
[29]Agler M T,Ruhe J,Kroll S,et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation[J]. PLoS Biology,2016,14(1):e1002352.
[30]Jackson C R,Denney W C.Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern Magnolia (Magnolia grandiflora)[J]. Microbial Ecology,2011,61(1):113-122.
[31]Balint-Kurti P,Simmons S J,Blum J E,et al. Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection[J]. Molecular Plant-Microbe Interactions,2010,23(4):473-484.
[32]Clotet J,Posas F. Control of cell cycle in response to osmostress:lessons from yeast[J]. Methods Enzymol,2007,428:63-76.
[33]Sasse J,Martinoia E,Northen T. Feed your friends:do plant exudates shape the root microbiome?[J]. Trends in Plant Science,2018,23(1):25-41.
[34]Zhalnina K,Louie K B,Hao Z,et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology,2018,3:470-480.
[35]Hannula S E,Boschker H T S,de Boer W,et al. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline[J]. The New Phytologist,2012,194(3):784-799.
[36]丁娜,林华,张学洪,等. 植物根系分泌物与根际微生物交互作用机制研究进展[J]. 土壤通报,2022,53(5):1212-1219.
[37]Ahmad S,Veyrat N,Gordon-Weeks R,et al. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize[J]. Plant Physiology,2011,157(1):317-327.
[38]Hu L F,Robert C A M,Cadot S,et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications,2018,9(1):2738.
[39]Huang A C,Jiang T,Liu Y X,et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science,2019,364(6440):eaau6389.
[40]Pieterse C M J,van der Does D,Zamioudis C,et al. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology,2012,28:489-521.
[41]Kniskern J M,Traw M B,Bergelson J.Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions,2007,20(12):1512-1522.
[42]Carvalhais L C,Dennis P G,Badri D V,et al. Linking jasmonic acid signaling,root exudates,and rhizosphere microbiomes[J]. Molecular Plant-Microbe Interactions,2015,28(9):1049-1058.
[43]Carrión V J,Perez-Jaramillo J,Cordovez V,et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science,2019,366(6465):606-612.
[44]Yin C T,Casa Vargas J M,Schlatter D C,et al. Rhizosphere community selection reveals bacteria associated with reduced root disease[J]. Microbiome,2021,9(1):86.
[45]Liu H W,Li J Y,Carvalhais L C,et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens[J]. The New Phytologist,2021,229(5):2873-2885.
[46]Sun L,Gao J S,Huang T,et al. Parental material and cultivation determine soil bacterial community structure and fertility[J]. FEMS Microbiology Ecology,2015,91(1):1-10.
[47]Liu H W,Brettell L E. Plant defense by VOC-induced microbial priming[J]. Trends in Plant Science,2019,24(3):187-189.
[48]李馨宇,姜宇,米刚. 不同施肥模式对土壤微生物数量和酶活性及小麦产量的影响[J]. 黑龙江农业科学,2023(1):13-17.
[49]Xun W B,Xu Z H,Li W D,et al. Long-term organic-inorganic fertilization ensures great soil productivity and bacterial diversity after natural-to-agricultural ecosystem conversion[J]. Journal of Microbiology,2016,54(9):611-617.
[50]Bei S K,Zhang Y L,Li T T,et al. Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil[J]. Agriculture,Ecosystems & Environment,2018,260:58-69.
[51]Guo Z,Han J C,Li J,et al. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure[J]. PLoS One,2019,14(4):e0216006.
[52]Zhou Y Y,Yang Z,Liu J G,et al. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease[J]. Nature Communications,2023,14(1):8126.
[53]Zhou X G,Zhang J Y,Khashi U R M,et al. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes[J]. Molecular Plant,2023,16(5):849-864.
[54]Wang N Q,Wang T Q,Chen Y,et al. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize[J]. Nature Communications,2024,15:839.
[55]Pieterse C M J,Zamioudis C,Berendsen R L,et al. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology,2014,52:347-375.
[56]Saxena A K,Kumar M,Chakdar H,et al. Bacillus species in soil as a natural resource for plant health and nutrition[J]. Journal of applied microbiology,2020,128(6):1583-1594.
[57]Ge A H,Liang Z H,Xiao J L,et al. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control[J]. Agriculture,Ecosystems & Environment,2021,312:107336.
[58]Shafi J,Tian H,Ji M. Bacillus species as versatile weapons for plant pathogens:a review[J]. Biotechnology & Biotechnological Equipment,2017,31:446-459.
[59]Kwak M J,Kong H G,Choi K,et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology,2018,36(11):1117.
[60]Gu S H,Wei Z,Shao Z Y,et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology,2020,5(8):1002-1010.
[61]Li P D,Zhu Z R,Zhang Y Z,et al. The phyllosphere microbiome shifts toward combating melanose pathogen[J]. Microbiome,2022,10(1):56.
[62]李梦玮,陈晓霞,廖礼彬,等. 丛枝菌根真菌联合拮抗菌对花椒根腐病的防治作用[J]. 西南农业学报,2023,36(11):2391-2400.
[63]邹佳迅,范晓旭,宋福强. 木霉(Trichoderma spp.)对植物土传病害生防机制的研究进展[J]. 大豆科学,2017,36(6):970-977.
[64]Wang M,Xiang L,Jiang W,et al. Soil arbuscular mycorrhizal fungal community structure and diversity in apple orchards with different replant disease severity around Bohai Bay,China[J]. Applied Soil Ecology,2022,177:104524.
[65]王瑞飞,孔盈利,魏艺璇,等. 菌剂对鸡粪-生物炭堆肥理化性质和微生物群落结构的影响[J]. 江苏农业学报,2023,39(4):966-977.
[66]佐长赓,王静怡,牛新湘,等. 内生菌与根际细菌对棉花的促生与诱导抗病作用[J]. 西南农业学报,2022,35(4):757-763.
[67]Berendsen R L,Vismans G,Yu K,et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. The ISME Journal,2018,12(6):1496-1507.
[68]Zamioudis C,Korteland J,van Pelt J A,et al. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses[J]. The Plant Journal,2015,84(2):309-322.
[69]Yadav V,Kumar M,Deep D K,et al. Withdrawal:a phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant[J]. The Journal of Biological Chemistry,2021,296:100457.
[70]Rudrappa T,Czymmek K J,Paré P W,et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology,2008,148(3):1547-1556.
[71]Wu B,Wang X,Yang L,et al. Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco[J]. Applied Soil Ecology,2016,103:1-12.
[72]Mazurier S,Corberand T,Lemanceau P,et al. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt[J]. The ISME Journal,2009,3(8):977-991.
[73]尹家康. 利用微生物组防治番茄青枯病的研究[D]. 武汉:华中农业大学,2023.
[74]Weller D M,Raaijmakers J M,Gardener B B,et al. Microbial populations responsible for specific soil suppressiveness to plant pathogens[J]. Annual Review of Phytopathology,2002,40:309-348.
[75]李长印. 硒联合茉莉酸甲酯防治番茄灰霉病的微生物学机制[D]. 武汉:华中农业大学,2022.
[76]农倩,张雯龙,蓝桃菊,等. 一株抗香蕉枯萎病DSE菌株的筛选鉴定及抗病机理初探[J]. 热带作物学报,2017,38(3):559-564.
[77]Deyett E,Rolshausen P E. Temporal dynamics of the sap microbiome of grapevine under high pierces disease pressure[J]. Frontiers in Plant Science,2019,10:1246.
[78]Zhang J Y,Liu Y X,Zhang N,et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology,2019,37(6):676-684.
[79]冀宇,武云鹏,王胤,等. 功能型复合微生物菌剂防治黄瓜根结线虫的研究[J]. 中国生物防治学报,2016,32(4):493-502.
[80]Chen S Y. Suppression of Heterodera glycines in soils from fields with long-term soybean monoculture[J]. Biocontrol Science and Technology,2007,17(2):125-134.
[81]Niu B,Paulson J N,Zheng X Q,et al. Simplified and representative bacterial community of maize roots[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(12):E2450-E2459.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-03-13
基金项目:国家重点研发计划(编号:2022YFD1400200);湖北省重点研发计划(编号:2022BBA0076);国家现代农业产业技术体系建设专项(编号:CARS-26)。
作者简介:刘浩浩(1998—),男,河南焦作人,硕士,从事猕猴桃溃疡病的研究,E-mail:457055198@qq.com;共同第一作者:李黎(1985—),女,湖北仙桃人,博士,从事猕猴桃重大病害研究,E-mail:lili@wbgcas.cn。
通信作者:钟彩虹,博士,研究员,从事猕猴桃等果树的种质资源保护、遗传育种和产业技术研究,E-mail:zhongcaihong@wbgcas.cn;黄丽丽,博士,教授,从事小麦、果树病害的病原学和综合防治研究,E-mail:huanglili@nwsuaf.edu.cn。
更新日期/Last Update: 2024-07-20