|本期目录/Table of Contents|

[1]梁倩倩,陈勇,崔艳荣.基于改进轻量化网络MobileViT的苹果叶片病虫害识别方法[J].江苏农业科学,2024,52(14):222-229.
 Liang Qianqian,et al.An apple leaf pest identification method based on improved lightweight network MobileViT[J].Jiangsu Agricultural Sciences,2024,52(14):222-229.
点击复制

基于改进轻量化网络MobileViT的苹果叶片病虫害识别方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第14期
页码:
222-229
栏目:
农业工程与信息技术
出版日期:
2024-07-20

文章信息/Info

Title:
An apple leaf pest identification method based on improved lightweight network MobileViT
作者:
梁倩倩陈勇崔艳荣
长江大学计算机科学学院,湖北荆州 434000
Author(s):
Liang Qianqianet al
关键词:
多头注意力机制图像分类轻量化网络苹果叶片病害识别Filter Layer
Keywords:
-
分类号:
TP391.41
DOI:
-
文献标志码:
A
摘要:
针对苹果叶片病害识别准确率低以及现有模型难以适应真实复杂场景等问题,提出一种改进的轻量化网络——MobileViT_filter_FCN,以提高对苹果叶片病害的识别准确率,并使得模型可以适应户外的复杂光照及遮挡环境。首先收集5类常见苹果叶片病害(如落叶病、褐斑病等)的图像样本,并利用多种数据增强技术对样本数据进行预处理(如水平翻转、垂直翻转等),以增加样本数据的多样性并提高模型的泛化能力;接着利用傅里叶变换技术设计一个可学习的滤波器层Filter layer,替换原始MobileViT模型中的多头注意力结构,以降低图片中的噪声影响并提高模型性能;最后,在修改后的MobileViT 模型基础上,利用深度卷积层和残差结构设计一种FCN结构,结合该结构增强模型对病害图像的特征学习能力,进一步提高模型性能。试验结果表明,改进后的MobileViT_filter模型对苹果叶片病害的平均识别准确率达到97.73%,较原模型提高0.95百分点;在该基础上加入FCN结构后,平均识别准确率达到98.03%,较原模型提高1.25百分点,同时参数量减少2.6 M。
Abstract:
-

参考文献/References:

[1]张立欣,张楠楠,张晓. 基于机器学习算法对苹果产地的判别分析[J]. 激光与光电子学进展,2022,59(4):451-457.
[2]齐林艳. 浅析我国苹果发展现状及存在的问题[J]. 现代农村科技,2016(22):31-32.
[3]张文欣. 苹果病虫害绿色防控技术研究与应用[J]. 种子科技,2023,41(11):110-112.
[4]杜英杰,宗哲英,王祯,等. 农作物病害诊断方法现状和展望[J]. 江苏农业科学,2023,51(6):16-23.
[5]封雨欣,梁少华,童浩. 基于对比学习的多肉植物分类识别方法研究[J]. 河南农业科学,2023,52(7):154-162.
[6]龚黎,李霞,方晗,等. 基于优化卷积网络Faster R-CNN自动检测甲状腺结节超声图像的研究[J]. 中国超声医学杂志,2023,39(2):209-213.
[7]于书娟,卢小雪,赵磊磊. 教育人工智能变革的基本逻辑与发展进路[J]. 当代教育科学,2023(5):40-49.
[8]皮卫. 人工智能技术与智慧农业发展的全方位融合[J]. 棉花学报,2023,35(3):251.
[9]Iandola F N,Han S,Moskewicz M W,et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL]. [2023-05-07]. https://arxiv.org/abs/1602.07360.
[10]Zhang X Y,Zhou X Y,Lin M X,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE,2018:6848-6856.
[11]Sandler M,Howard A,Zhu M L,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE,2018:4510-4520.
[12]Howard A,Sandler M,Chu G,et al. Searching for MobileNetV3[EB/OL]. [2023-05-07]. https://arxiv.org/abs/1905.02244.
[13]熊梦园,詹炜,桂连友,等. 基于ResNet模型的玉米叶片病害检测与识别[J]. 江苏农业科学,2023,51(8):164-170.
[14]刘拥民,刘翰林,石婷婷,等. 一种优化的Swin Transformer番茄叶片病害识别方法[J]. 中国农业大学学报,2023,28(4):80-90.
[15]雷建云,叶莎,夏梦,等. 基于改进YOLO v4的葡萄叶片病害检测[J]. 中南民族大学学报(自然科学版),2022,41(6):712-719.
[16]Mehta S,Rastegari M. MobileViT:light-weight,general-purpose,and mobile-friendly vision transformer[EB/OL]. [2023-05-07]. https://arxiv.org/abs/2110.02178.
[17]Dosovitskiy A,Beyer L,Kolesnikov A,et al. An image is worth 16x16 words:transformers for image recognition at scale[EB/OL]. [2023-05-07]. https://arxiv.org/abs/2010.11929.
[18]Vaswani A,Shazeer N,Parmar N,et al. Attention is all you need[EB/OL]. [2023-05-07]. https://arxiv.org/abs/1706.03762.
[19]Howard A G,Zhu M L,Chen B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-05-07]. https:arxiv.org/1704.04861.
[20]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE,2016:770-778.
[21]Chitsaz K,Hajabdollahi M,Karimi N,et al. Acceleration of convolutional neural network using FFT-based split convolutions[EB/OL]. [2023-05-07]. https://arxiv.org/abs/2003.12621.
[22]Lee-Thorp J,Ainslie J,Eckstein I,et al. FNet:mixing tokens with Fourier transforms[EB/OL]. [2023-05-07]. https://arxiv.org/abs/2105.03824.

相似文献/References:

[1]余骥远,高尚兵,李洁,等.基于MS-PLNet和高光谱图像的绿豆叶斑病病级分类[J].江苏农业科学,2023,51(6):178.
 Yu Jiyuan,et al.Classification of mung bean leaf spot based on MS-PLNet and hyperspectral images[J].Jiangsu Agricultural Sciences,2023,51(14):178.
[2]马晓,邢雪,武青海.基于改进ConvNext的复杂背景下玉米叶片病害分类[J].江苏农业科学,2023,51(19):190.
 Ma Xiao,et al.Maize leaf disease classification under complex background based on improved ConvNext[J].Jiangsu Agricultural Sciences,2023,51(14):190.
[3]谭彬,蔡健荣,许骞,等.基于注意力机制改进卷积神经网络的柑橘病虫害识别[J].江苏农业科学,2024,52(8):176.
 Tan Bin,et al.Recognition of citrus pests and diseases based on attention mechanism improved convolutional neural networks[J].Jiangsu Agricultural Sciences,2024,52(14):176.
[4]王晶,崔艳荣.基于改进MobileNet v3-Small模型的草莓病害识别方法[J].江苏农业科学,2024,52(10):225.
 Wang Jing,et al.Strawberry disease identification method based on improved MobileNet v3-Small model[J].Jiangsu Agricultural Sciences,2024,52(14):225.
[5]张澳雪,崔艳荣,李素若,等.基于改进RegNet网络的玉米叶片病害识别研究[J].江苏农业科学,2024,52(11):216.
 Zhang Aoxue,et al.Identification of maize leaf diseases based on improved RegNet network[J].Jiangsu Agricultural Sciences,2024,52(14):216.
[6]王浩宇,崔艳荣.基于改进ShuffleNet v2模型的苹果叶片病害识别方法[J].江苏农业科学,2024,52(13):214.
 Wang Haoyu,et al.Apple leaf disease identification method based on improved ShuffleNet v2 model[J].Jiangsu Agricultural Sciences,2024,52(14):214.
[7]戴硕,白涛,李东亚,等.基于知识蒸馏及改进ShuffleNet v2的棉花病虫害识别方法[J].江苏农业科学,2024,52(15):222.
 Dai Shuo,et al.Recognition of cotton pests and diseases based on knowledge distillation and improved ShuffleNet v2[J].Jiangsu Agricultural Sciences,2024,52(14):222.
[8]严露露,朱赞彬,冯世杰,等.基于改进FixMatch算法的半监督番茄病虫害识别[J].江苏农业科学,2024,52(20):244.
 Yan Lulu,et al.Semi-supervised identification of tomato diseases and pests based on improved FixMatch algorithm[J].Jiangsu Agricultural Sciences,2024,52(14):244.
[9]董天亮,李佳,马晓,等.基于SC-ConvNeXt网络模型的小麦叶片病害识别方法[J].江苏农业科学,2025,53(5):129.
 Dong Tianliang,et al.A wheat leaf disease recognition method based on SC-ConvNeXt network model[J].Jiangsu Agricultural Sciences,2025,53(14):129.

备注/Memo

备注/Memo:
收稿日期:2023-08-27
基金项目:国家自然科学基金(编号:62077018)。
作者简介:梁倩倩(2000—),女,湖北随州人,硕士研究生,主要从事机器学习与人工智能研究。E-mail:1915812040@qq.com。
通信作者:陈勇,高级工程师,硕士生导师,主要从事WEB信息处理、人工智能应用研究。E-mail:285527563@qq.com。
更新日期/Last Update: 2024-07-20