[1]辛竹琳,崔彦娟,杨小薇,等. 全球蔬菜产业现状及中国蔬菜育种发展路径研究进展[J]. 分子植物育种,2022,20(9):3122-3132.
[2]Lv H H,Fang Z Y,Yang L M,et al. An update on the arsenal:mining resistance genes for disease management of Brassica crops in the genomic era[J]. Horticulture Research,2020,7:34.
[3]Dixon G R. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease[J]. Journal of Plant Growth Regulation,2009,28(3):194-202.
[4]王靖,黄云,李小兰,等. 十字花科根肿病研究进展[J]. 植物保护,2011,37(6):153-158.
[5]Wallenhammar A C. Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in central Sweden and factors influencing soil infestation levels[J]. Plant Pathology,1996,45(4):710-719.
[6]Garvetto A,Murúa P,Kirchmair M,et al. Phagocytosis underpins the biotrophic lifestyle of intracellular parasites in the class Phytomyxea (Rhizaria)[J]. The New Phytologist,2023,238(5):2130-2143.
[7]Rashid A,Ahmed H U,Xiao Q,et al. Effects of root exudates and pH on Plasmodiophora brassicae resting spore germination and infection of canola (Brassica napus L.) root hairs[J]. Crop Protection,2013,48:16-23.
[8]Wang Y,Zheng X R,Sarenqimuge S,et al. The soil bacterial community regulates germination of Plasmodiophora brassicae resting spores rather than root exudates[J]. PLoS Pathogens,2023,19(3):e1011175.
[9]Liu L J,Qin L,Zhou Z Q,et al. Refining the life cycle of Plasmodiophora brassicae[J]. Phytopathology,2020,110(10):1704-1712.
[10]Aist J R,Williams P H. The cytology and kinetics of cabbage root hair penetration by Plasmodiophora brassicae[J]. Canadian Journal of Botany,1971,49(11):2023-2034.
[11]Moxham S E,Buczacki S T. Chemical composition of the resting spore wall of Plasmodiophora brassicae[J]. Transactions of the British Mycological Society,1983,80(2):297-304.
[12]Bi K,He Z C,Gao Z X,et al. Integrated omics study of lipid droplets from Plasmodiophora brassicae[J]. Scientific Reports,2016,6:36965.
[13]Schwelm A,Fogelqvist J,Knaust A,et al. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases[J]. Scientific Reports,2015,5:11153.
[14]Ludwig-Müller J,Jülke S,Geiü K,et al. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid[J]. Molecular Plant Pathology,2015,16(4):349-364.
[15]Stjelja S,Fogelqvist J,Tellgren-Roth C,et al. The architecture of the Plasmodiophora brassicae nuclear and mitochondrial genomes[J]. Scientific Reports,2019,9(1):15753.
[16]杜艳,刘邮洲,李建斌,等. 十字花科根肿病研究现状及展望[J]. 江苏农业科学,2014,42(10):122-126.
[17]Chen T,Bi K,Zhao Y L,et al. MAPKK inhibitor U0126 inhibits Plasmodiophora brassicae development[J]. Phytopathology,2018,108(6):711-720.
[18]Singh K,Tzelepis G,Zouhar M,et al. The immunophilin repertoire of Plasmodiophora brassicae and functional analysis of PbCYP3 cyclophilin[J]. Molecular Genetics and Genomics,2018,293(2):381-390.
[19]Yu F W,Wang S Y,Zhang W,et al. Genome-wide identification of genes encoding putative secreted E3 ubiquitin ligases and functional characterization of PbRING1 in the biotrophic protist Plasmodiophora brassicae[J]. Current Genetics,2019,65(6):1355-1365.
[20]余方伟,王神云,张伟,等. 芸薹根肿菌蛋白磷酸酶组的鉴定及生物信息学分析[J]. 江苏农业学报,2020,36(2):318-324.
[21]Kong L Y,Li X N,Zhan Z X,et al. Sugar transporters in Plasmodiophora brassicae:genome-wide identification and functional verification[J]. International Journal of Molecular Sciences,2022,23(9):5264.
[22]Chen W,Li Y,Yan R B,et al. Identification and characterization of Plasmodiophora brassicae primary infection effector candidates that suppress or induce cell death in host and nonhost plants[J]. Phytopathology,2019,109(10):1689-1697.
[23]Pérez-López E,Hossain M M,Tu J Y,et al. Transcriptome analysis identifies Plasmodiophora brassicae secondary infection effector candidates[J]. Journal of Eukaryotic Microbiology,2020,67(3):337-351.
[24]Feng J,Hwang R,Hwang S F,et al. Molecular characterization of a serine protease Pro1 from Plasmodiophora brassicae that stimulates resting spore germination[J]. Molecular Plant Pathology,2010,11(4):503-512.
[25]Djavaheri M,Ma L S,Klessig D F,et al. Mimicking the host regulation of salicylic acid:a virulence strategy by the clubroot pathogen Plasmodiophora brassicae[J]. Molecular Plant-Microbe Interactions,2019,32(3):296-305.
[26]Bulman S,Richter F,Marschollek S,et al. Arabidopsis thaliana expressing PbBSMT,a gene encoding a SABATH-type methyltransferase from the plant pathogenic protist Plasmodiophora brassicae,show leaf chlorosis and altered host susceptibility[J]. Plant Biology,2018,21(S1):120-130.
[27]Pérez-López E,Hossain M M,Wei Y D,et al. A clubroot pathogen effector targets cruciferous cysteine proteases to suppress plant immunity[J]. Virulence,2021,12(1):2327-2340.
[28]Chen W,Li Y,Yan R B,et al. SnRK1.1-mediated resistance of Arabidopsis thaliana to clubroot disease is inhibited by the novel Plasmodiophora brassicae effector PBZF1[J]. Molecular Plant Pathology,2021,22(9):1057-1069.
[29]Muirhead K,Pérez-López E. Plasmodiophora brassicae CBM18 proteins bind chitin and suppress chitin-triggered immunity[J]. PhytoFrontiers,2022,2(1):21-29.
[30]Williams P H. A system for the determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga[J]. Phytopathology,1966,56(6):624-626.
[31]Buczacki S T,Toxopeus H,Mattusch P,et al. Study of physiologic specialization in Plasmodiophora brassicae:proposals for attempted rationalization through an international approach[J]. Transactions of the British Mycological Society,1975,65(2):295-303.
[32]Some A,Manzanares M J,Laurens F,et al. Variation for virulence on Brassica napus L.amongst Plasmodiophora brassicae collections from France and derived single-spore isolates[J]. Plant Pathology,1996,45(3):432-439.
[33]Strelkov S E,Hwang S F,Manolii V P,et al. Virulence and pathotype classification of Plasmodiophora brassicae populations collected from clubroot resistant canola (Brassica napus) in Canada[J]. Canadian Journal of Plant Pathology,2018,40(2):284-298.
[34]Pang W X,Liang Y,Zhan Z X,et al. Development of a Sinitic clubroot differential set for the pathotype classification of Plasmodiophora brassicae[J]. Frontiers in Plant Science,2020,11:568771.
[35]Zheng J,Wang X L,Xiao Y,et al. Specific genes identified in pathotype 4 of the clubroot pathogen Plasmodiophora brassicae[J]. Plant Disease,2019,103(3):495-503.
[36]Zhang H,Feng J,Manolii V P,et al. Characterization of a gene identified in pathotype 5 of the clubroot pathogen Plasmodiophora brassicae[J]. Phytopathology,2015,105(6):764-770.
[37]Yang H,Zheng J,Fu Y D,et al. Specific genes and sequence variation in pathotype 7 of the clubroot pathogen Plasmodiophora brassicae[J]. European Journal of Plant Pathology,2020,157(1):17-28.
[38]Tso H H,Galindo-González L,Locke T,et al. Protocol:rhPCR and SNaPshot assays to distinguish Plasmodiophora brassicae pathotype clusters[J]. Plant Methods,2022,18(1):91.
[39]Fu H T,Yang Y L,Mishra V,et al. Most Plasmodiophora brassicae populations in single canola root galls from Alberta fields are mixtures of multiple strains[J]. Plant Disease,2020,104(1):116-120.
[40]柴阿丽,李晓菁,张思雨,等. 土壤中芸薹根肿菌qPCR检测与风险预警体系的建立与应用[J]. 植物病理学报,2022,52(6):967-975.
[41]Xing M Z,Guan G G,Zhang X Y,et al. Spatiotemporal quantification of Plasmodiophora brassicae inoculum in relation to clubroot development under inoculated and naturally infested field conditions[J]. Plant Disease,2021,105(11):3636-3642.
[42]Wallenhammar A C,Almquist C,Sderstrm M,et al. In-field distribution of Plasmodiophora brassicae measured using quantitative real-time PCR[J]. Plant Pathology,2012,61(1):16-28.
[43]Chai A L,Li J P,Xie X W,et al. Dissemination of Plasmodiophora brassicae in livestock manure detected by qPCR[J]. Plant Pathology,2016,65(1):137-144.
[44]关格格,邢曼竹,庞文星,等. 芸薹根肿菌及油菜根肿病分子检测与早期诊断[J]. 中国油料作物学报,2019,41(3):409-414.
[45]Wen R,Lee J,Chu M G,et al. Quantification of Plasmodiophora brassicae resting spores in soils using droplet digital PCR (ddPCR)[J]. Plant Disease,2020,104(4):1188-1194.
[46]Al-Daoud F,Gossen B D,Robson J,et al. Propidium monoazide improves quantification of resting spores of Plasmodiophora brassicae with qPCR[J]. Plant Disease,2017,101(3):442-447.
[47]Peng G,Pageau D,Strelkov S E,et al. A >2-year crop rotation reduces resting spores of Plasmodiophora brassicae in soil and the impact of clubroot on canola[J]. European Journal of Agronomy,2015,70:78-84.
[48]战宗祥,江莹芬,朱紫媛,等. 与位点PbBa8.1紧密连锁分子标记的开发及甘蓝型油菜根肿病抗性育种[J]. 中国油料作物学报,2015,37(6):766-771.
[49]李倩,Nadil S,周元委,等. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报,2021,47(2):210-223.
[50]王丽丽,王鑫,吴海东,等. 抗根肿病大白菜新品种辽白28[J]. 园艺学报,2022,49(增刊2):89-90.
[51]黄小琴,张蕾,杨潇湘,等. 西南地区油菜品种根肿病抗性及布局分析[J]. 中国农学通报,2020,36(1):122-130.
[52]Zhu M L,He Y W,Li Y,et al. Two new biocontrol agents against clubroot caused by Plasmodiophora brassicae[J]. Frontiers in Microbiology,2020,10:3099.
[53]He P J,Cui W Y,Munir S,et al. Fengycin produced by Bacillus subtilis XF-1 plays a major role in the biocontrol of Chinese cabbage clubroot via direct effect and defense stimulation[J]. Journal of Cellular Physiology,2023:1-12.
[54]Li J H,Philp J,Li J S,et al. Trichoderma harzianum inoculation reduces the incidence of clubroot disease in Chinese cabbage by regulating the rhizosphere microbial community[J]. Microorganisms,2020,8(9):1325.
[55]Doan T T,Jschke D,Ludwig-Müller J.An endophytic fungus induces tolerance against the clubroot pathogen Plasmodiophora brassicae in Arabidopsis thaliana and Brassica rapa roots[J]. Acta Horticulturae,2010(867):173-180.
[56]Jschke D,Dugassa-Gobena D,Karlovsky P,et al. Suppression of clubroot (Plasmodiophora brassicae) development in Arabidopsis thaliana by the endophytic fungus Acremonium alternatum[J]. Plant Pathology,2010,59(1):100-111.
[57]Lahlali R,McGregor L,Song T,et al. Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid,ethylene,and auxin biosynthesis[J]. PLoS One,2014,9(4):e94144.
[58]王会军,陈卓君,吴毅歆,等. 防治十字花科作物根肿病的油菜内生细菌分离与鉴定[J]. 中国油料作物学报,2014,36(1):92-97.
[59]Schwelm A,Brennan F,Geisen S.No rest for resting spores:can predators mitigate clubroot disease?[J]. Journal of Sustainable Agriculture and Environment,2023,2(2):131-139.
[60]Zamani-Noor N,Brand S,Schting H P. Effect of pathogen virulence on pathogenicity,host range,and reproduction of Plasmodiophora brassicae,the causal agent of clubroot disease[J]. Plant Disease,2022,106(1):57-64.
[61]章艺,马新焱,余红瑞,等. 十字花科作物根肿病综合防治研究进展[J]. 中国蔬菜,2022(10):27-37.
[62]Peng G,Lahlali R,Hwang S F,et al. Crop rotation,cultivar resistance,and fungicides/biofungicides for managing clubroot (Plasmodiophora brassicae) on canola[J]. Canadian Journal of Plant Pathology,2014,36(S1):99-112.
[63]周晓肖,李伟龙,蒋芯,等. 青花菜根肿病田间防治技术研究[J]. 植物保护,2020,46(6):259-263,278.
[64]Wang W,Qin L,Zhang W J,et al. WeiTsing,a pericycle-expressed ion channel,safeguards the stele to confer clubroot resistance[J]. Cell,2023,186(12):2656-2671.
[65]Yang Z Q,Jiang Y F,Gong J F,et al. R gene triplication confers European fodder turnip with improved clubroot resistance[J]. Plant Biotechnology Journal,2022,20(8):1502-1517.
[66]Zhang W,Wang S Y,Yu F W,et al. Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var.capitata L.) reveal their roles in chilling and clubroot disease responses[J]. BMC Genomics,2019,20(1):93.
[67]Walerowski P,Gündel A,Yahaya N,et al. Clubroot disease stimulates early steps of phloem differentiation and recruits SWEET sucrose transporters within developing galls[J]. The Plant Cell,2018,30(12):3058-3073.
[68]张智浩,邓毅书,聂强,等. 白菜健康株与根肿病患病株的土壤微生物群落和功能差异[J]. 中国生态农业学报,2023,31(4):530-542.
[1]王会福,钟列权,余山红,等.青花菜茎瘤病、根肿病和根结线虫病的识别与防治[J].江苏农业科学,2013,41(09):127.
Wang Huifu,et al.Identification and control of stem tumor,club root and root knot nematode in broccoli[J].Jiangsu Agricultural Sciences,2013,41(15):127.
[2]索欢,陈龙正,徐海,等.小白菜根肿病接种鉴定研究[J].江苏农业科学,2016,44(05):193.
Suo Huan,et alHJ.mm.Study on inoculation evaluation of clubroot of Brassica rapa chinensis[J].Jiangsu Agricultural Sciences,2016,44(15):193.
[3]彭琦,张椿雨,费维新,等.江苏省主栽油菜品种根肿病抗性鉴定及分子标记检测[J].江苏农业科学,2019,47(12):149.
Peng Qi,et al.Identification and molecular marker detection of root swelling resistance of main rape cultivars in Jiangsu Province[J].Jiangsu Agricultural Sciences,2019,47(15):149.
[4]陈红琳,杨泽鹏,陈尚洪,等.氰氨化钙施用量对油菜根肿病发生、产量和经济效益的影响[J].江苏农业科学,2023,51(10):113.
Chen Honglin,et al.Effects of different application amounts of calcium cyanamide on occurrence of clubroot disease,growth and economic benefits of rapeseed[J].Jiangsu Agricultural Sciences,2023,51(15):113.
[5]杜艳,刘邮洲,李建斌,等.十字花科根肿病研究现状及展望[J].江苏农业科学,2014,42(10):122.
Du Yan,et al.Status and prospects of clubroot of cruciferous crops[J].Jiangsu Agricultural Sciences,2014,42(15):122.
[6]丁琳,梁海迪,赵辉,等.湖南栽培油菜品种根肿病抗性鉴定及防控[J].江苏农业科学,2024,52(16):170.
Ding Lin,et al.Resistance identification and control of clubroot of cultivated rapeseed cultivars in Hunan Province[J].Jiangsu Agricultural Sciences,2024,52(15):170.