[1]程式华,李建. 现代中国水稻[M]. 北京:金盾出版社,2007.
[2]Howarth C J,Ougham H J. Gene expression under temperature stress[J]. The New Phytologist,1993,125(1):1-26.
[3]Guo Z H,Cai L J,Chen Z Q,et al. Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-Seq and RNA-Seq[J]. Royal Society Open Science,2020,7(11):201081.
[4]Guo Z H,Liu C X,Xiao W M,et al. Comparative transcriptome profile analysis of anther development in reproductive stage of rice in cold region under cold stress[J]. Plant Molecular Biology Reporter,2019,37(3):129-145.
[5]Mamun E A,Alfred S,Cantrill L C,et al. Effects of chilling on male gametophyte development in rice[J]. Cell Biology International,2006,30(7):583-591.
[6]Oda S,Kaneko F,Yano K,et al. Morphological and gene expression analysis under cool temperature conditions in rice anther development[J]. Genes & Genetic Systems,2010,85(2):107-120.
[7]Qiu C P,Ethier G,Pepin S,et al. Persistent negative temperature response of mesophyll conductance in red raspberry (Rubus idaeus L.) leaves under both high and low vapour pressure deficits:a role for abscisic acid?[J]. Plant,Cell & Environment,2018,41(4):876.
[8]李健陵,霍治国,吴丽姬,等. 孕穗期低温对水稻产量的影响及其生理机制[J]. 中国水稻科学,2014,28(3):277-288.
[9]Saito K,Hayano-Saito Y,Kuroki M,et al. Map-based cloning of the rice cold tolerance gene Ctb1[J]. Plant Science,2010,179(1/2):97-102.
[10]Vannini C,Campa M,Iriti M,et al. Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene[J]. Plant Science,2007,173(2):231-239.
[11]Kim S H,Choi H S,Cho Y C,et al. Cold-responsive regulation of a flower-preferential class Ⅲ peroxidase gene,OsPOX1,in rice (Oryza sativa L.)[J]. Journal of Plant Biology,2012,55(2):123-131.
[12]Sato Y,Masuta Y,Saito K,et al. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene,OsAPXa[J]. Plant Cell Reports,2011,30(3):399-406.
[13]Guo Z H,Cai L J,Liu C X,et al. Global analysis of differentially expressed genes between two Japonica rice varieties induced by low temperature during the booting stage by RNA-Seq[J]. Royal Society Open Science,2020,7(6):192243.
[14]韦秀叶,赵信林,郭媛,等. 麻类作物转录组测序分析研究进展[J]. 中国麻业科学,2020,42(3):128-134.
[15]吴倩,张磊,黄志平,等. 转录组测序及其在野生大豆基因资源发掘中的应用[J]. 大豆科学,2013,32(6):845-851.
[16]许波,张伟强,冯晓曦,等. 转录组测序技术在玉米中应用研究进展[J]. 玉米科学,2014,22(1):67-72,78.
[17]Bai B,Wu J,Sheng W T,et al. Comparative analysis of anther transcriptome profiles of two different rice male sterile lines genotypes under cold stress[J]. International Journal of Molecular Sciences,2015,16(5):11398-11416.
[18]Zhang L,Li X Y,Li D K,et al. CARK1 mediates ABA signaling by phosphorylation of ABA receptors[J]. Cell Discovery,2018,4:30.
[19]丛庆,张琪,宋丽莉,等. 激素在植物冷胁迫应答中的角色[J]. 核农学报,2016,30(3):614-619.
[20]张明菊,朱莉,夏启中. 植物激素对胁迫反应调控的研究进展[J]. 湖北大学学报(自然科学版),2021,43(3):242-253,263.
[21]刘芬. 低温胁迫对细枝木麻黄无性系生理指标和转录组的影响[D]. 长沙:中南林业科技大学,2015:5-7.
[22]Jain M,Khurana J P. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice[J]. The FEBS Journal,2009,276(11):3148-3162.
[23]高红秀,朱琳,刘天奇,等. 水稻植物激素响应低温胁迫反应的转录组分析[J]. 分子植物育种,2021,19(13):4188-4197.
[24]胡潇婕,毛东海. 基于RNA-Seq技术分析植物激素信号途径在水稻幼苗中对低温胁迫的应答规律[J]. 农业现代化研究,2019,40(5):878-890.
[25]刘琳帅,卞景阳,孙兴荣,等. 水稻低温冷害的研究进展[J]. 江苏农业科学,2022,50(24):9-15.
[26]贺梅,宋冬明. 寒地稻作区冷害防御措施[J]. 北方水稻,2015,45(1):43-44.
[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统
作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量
及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(19):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(19):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(19):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(19):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(19):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(19):90.
[11]郭晓红,吕艳东,周健,等.肥水耦合对寒地水稻品质的影响[J].江苏农业科学,2015,43(10):71.
Guo Xiaohong,et al.Effect of fertilizer and water coupling on quality of rice in cold region[J].Jiangsu Agricultural Sciences,2015,43(19):71.
[12]吕艳东,汪浩,郭晓红,等.肥水互作对寒地水稻产量构成因素及产量的影响[J].江苏农业科学,2016,44(01):74.
Lü Yandong,et al.Effects of fertilizer and water coupling on yield components and yield of rice in cold region[J].Jiangsu Agricultural Sciences,2016,44(19):74.
[13]郭晓红,王永慧,吕艳东,等.肥水互作对寒地水稻品质的影响[J].江苏农业科学,2016,44(01):79.
Guo Xiaohong,et al.Effect of fertilizer and water coupling on quality of rice in cold region[J].Jiangsu Agricultural Sciences,2016,44(19):79.